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ABSTRACT 

Converting biomass to useful products through synthesis gas (syngas) fermentation 

has the potential to replace petroleum based products with biobased ones; however, these 

process are limited in their application.  One of the most significant limiting steps in syngas 

fermentations is the gas-liquid mass transfer in the bioreactor due to the low solubilities of 

the major syngas components, CO and H2.  Hence, to explore possible solutions for over 

coming the gas-liquid mass transfer barrier, a non-traditional external airlift loop reactor is 

considered.  This study evaluates the hydrodynamics and gas-liquid mass transfer rates in an 

external airlift loop reactor with an area ratio of 1:16 operating under different conditions.  

Two downcomer configurations are investigated consisting of the downcomer vent open or 

closed to the atmosphere.  Experiments for these two configurations are carried out over a 

range of superficial gas velocities (UG) from UG = 0.5 to 20 cm/s using three aeration plates 

with open area ratios of 0.66, 0.99 and 2.22%. These results are compared to a bubble 

column operating under similar conditions.  Water quality variations are also investigated 

over the same range of UG with the downcomer open to the atmosphere.  Experimental 

results show that the gas holdup in the riser does not vary significantly with a change in the 

downcomer configuration or bubble column operation, while a considerable variation is 

observed in the downcomer gas holdup. Gas holdup in both the riser and downcomer are 

found to increase with increasing superficial gas velocity. Test results also show that the 

maximum gas holdup for the three aeration plates is similar, but that the gas holdup trends 

are different.  The superficial liquid velocity is found to vary considerably for the two 
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downcomer configurations.  However, for both cases, the superficial liquid velocity is a 

function of the superficial gas velocity and/or the flow condition in the downcomer. These 

observed variations are independent of the aerator plate open area ratio.  Gas-liquid mass 

transfer results indicate that mass transfer rates do vary for oxygen and carbon monoxide gas 

species.  Gas-liquid mass transfer rates are observed to increase linearly with UG in the 

presence of a surfactant and to increase similarly to riser gas holdup with UG for deionized 

water and ionic solutions.  The gas-liquid mass transfer rates are relatively unaffected by the 

reactor configuration.  The results also show that the addition of a surfactant or ionic 

compounds has a significant effect on mass transfer, where the surfactant restricts gas-liquid 

mass transfer and the ionic compounds enhance gas-liquid mass transfer. 
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CHAPTER 1: INTRODUCTION  

1.1 Motivation 

Materials and energy derived from biomass offer an alternative to conventional 

petroleum sources that would support national economic growth, national security, and 

reduce national dependence on imported petroleum sources.  Currently, the popular method 

for converting biomass to energy, specifically ethanol, is the sugar to ethanol process. 

Another method that may be used to convert biomass to energy and other useful compounds 

is the thermochemical process.  The thermochemical process relies on gasifying biomass to 

create synthesis gas (syngas) which is primarily a mixture of gaseous hydrogen, carbon 

monoxide, and carbon dioxide.  Syngas may be converted biologically or chemically to 

compounds that can be used to displace traditional petroleum based compounds. 

The biological approach to converting syngas to useful products relies on using 

microorganisms to metabolize the carbon monoxide and hydrogen to compounds that can be 

used as a feedstock for biopolymers.  However, because of the very low aqueous solubilities 

of carbon monoxide and hydrogen, syngas fermentations are limited by the low gas-liquid 

mass transfer rates.  Hence, if the gas-liquid mass transfer road block can be removed, syngas 

fermentations could become the preferred method for converting biomass to petroleum 

substitutes. 

The use of mechanically agitated reactors in biological applications have been 

extensively studied over the past several decades and are widely used in some industrial 
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settings.  However, these bioreactors have been found to have mixing characteristics that 

may adversely affect cell growth [1-6].  Thus, there is great interest in using pneumatically 

agitated bioreactors for processes such as syngas fermentation.  Like mechanically agitated 

bioreactors, pneumatically agitated bioreactors have been studied over the last several 

decades; however, these bioreactors have not received as much attention and are not used as 

extensively in commercial applications.  The design of pneumatically agitated bioreactors, 

unlike their mechanically agitated counter parts, varies widely and, as a result, the 

hydrodynamic and mass transfer characteristics of these bioreactors are often system 

dependent, hindering their wide spread implementation.   To facilitate their use, a better 

understanding of reactor hydrodynamics and gas-liquid mass transfer characteristics is 

needed. 

1.2 Objectives 

This research will focus on investigating transport phenomena in an external airlift 

loop reactor related to oxygen and carbon monoxide uptake in liquid media.  This will be 

accomplished by completion of the following objectives: 

Objective 1: Review the literature related to transport phenomena in airlift loop reactors to 

understand hydrodynamic and gas-liquid mass transfer fundamentals for this 

reactor type. 

Objective 2: Measure gas holdup and liquid velocity to explore the hydrodynamics in an 

external airlift loop reactor with a downcomer to riser area ratio of 1:16. 
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2a: Study how reactor hydrodynamics vary with volumetric flow rate by altering 

the operational mode of the external airlift loop reactor. 

2b: Assess the affect of aerator plate open area ratio on fluid dynamics for the 

operating conditions studied in 2a above. 

2c: Evaluate the influence of water quality on hydrodynamics for the conditions 

considered in 2a and 2b above. 

Objective 3: Simplify the bioassay method used to quantify dissolved carbon monoxide 

concentration. 

Objective 4: Measure and compare the gas-liquid volumetric mass transfer rates for an 

external airlift loop reactor using the dynamic gassing out method for oxygen 

(with a dissolved oxygen electrode) and carbon monoxide (with a bioassay). 

4a: Quantify how the gas-liquid volumetric mass transfer rate varies with the 

operational mode of the external airlift loop reactor. 

4b: Determine the affect of aerator plate open area ratio on gas-liquid mass 

transfer for the operating conditions in 4a above. 

4c: Consider the impact of water quality on gas-liquid mass transfer rates by 

studying and quantify how water quality impacts mass transfer for the 

conditions studied in 4a and 4b above. 

Objective 5: Compare the gas-liquid mass transfer data for oxygen and carbon monoxide 

and verify methods used to estimate one from the other. 
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The remainder of this dissertation expands on the above objectives.  Chapter 2 

reviews airlift loop reactor hydrodynamics, the factors known to affect hydrodynamics, the 

methods used to measure gas-liquid mass transfer, and the factors known to impact gas-liquid 

mass transfer with an emphasis being placed on the external airlift loop reactors.  Chapter 3 

addresses the methods and equipment used to quantify reactor hydrodynamics and gas-liquid 

mass transfer rates.  Chapter 4 presents and discusses selected gas holdup, superficial liquid 

velocity, and gas-liquid mass transfer results.  Chapter 5 briefly summarizes the trends and 

conclusions presented in Chapter 4 and well as presents some suggestions for future work. 
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CHAPTER 2: LITERATURE REVIEW  

This chapter is composed of four major sections.  The first section reviews bioreactor 

applications and types with a focus on external airlift loop reactors.  The second section 

presents the fundamental terminology related to airlift loop reactors.  The third section 

discusses airlift loop reactor performance.  The fourth section reviews methods used to 

measure gas-liquid mass transfer rates. 

2.1 Bioreactors 

A reactor in the most general form is simply defined as a vat or tank for chemical 

reaction.  Reactors used in modern industrial settings vary from simple tanks, where two or 

more chemicals are allowed to react, to more complex systems with agitators, baffles, static 

mixers, heat coils, cooling jackets, etc. to facilitate the production of a desired product. 

The term bioreactor has been coined to describe a special class of reactors used in 

biological processes.  Like reactors, bioreactors vary in shape, size, and complexity 

depending on the requirements of the application.  For example, bioreactors may be as simple 

as an ensilaging bag used to ferment and store biomass, to as complex as a chemostat used to 

culture artificial tissues and organs.  Regardless of the design and application, most 

bioreactors fall into one of three general categories: (i) a simple tank reactor, (ii) an agitated 

tank reactor, and (iii) a flow reactor.  The focus of this work deals with the agitated reactor. 
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2.1.1 Applications 

Bioreactors are used in many industrial applications around the world and thus it is 

not feasible here to discuss all the possible applications.  Suffice it to say that these 

applications vary from simple sugar fermentations to very complex processes that cultivate 

human tissue.  As the world continues to move toward to a bioeconomy, bioreactor 

applications will continue to increase.  Of particular interest in this work is the use of 

bioreactors to convert biomass to energy and other useful commodities that will eventually 

replace petroleum based products through a process called syngas fermentation. 

2.1.2 Types 

While the sparged stirred tank reactor is still the most common industrial reactor, it is 

not always the best reactor for microbial cultivation [2].  Hence, there is a large array of 

bioreactors currently in use.  Rather than try to describe all the various sparged reactor 

designs that may exist, only the three basic sparged reactor types will be discussed here: 

continuous stirred tank, bubble column, and airlift loop reactors (Figure 2.1). 
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(a)
Stir Tank 
Reactor

(b)
Bubble Column 

Reactor

(c)
Internal Airlift 
Loop Reactor

(d)
External Airlift 
Loop Reactor

Gas GasGasGas

Baffles

Impeller Aerator

 
Figure 2.1:  Basic sparged reactor types commonly used for industrial and biochemical 

applications. 

2.1.2.1 Continuous Stirred Tank Reactor (CSTR) 

The continuous stirred tank reactor (CSTR) is defined as an agitated vessel with the 

continuous addition and removal of mass and energy [7].  The main virtues of a CSTR are 

that they are highly flexible, have high overall mass transfer rates, are easily scaled up, and 

can be treated as ideal systems [4].  Due to these virtues, CSTRs have been widely studied 

and are commonly used in industrial applications. 

A schematic of a CSTR is shown in Figure 2.1a.  Most CSTRs are cylindrical with a 

height to diameter ratio greater than or equal to 2:1 [4, 5].  Although some CSTRs do have 

multiple agitators to enhance mixing, the typical CSTR is equipped with a single mechanical 

agitator located near the bottom of the reactor.  To prevent solid body rotation of the contents 
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in the reactor, CSTRs are fitted with baffles.  A gas sparger is placed below the impeller for 

aeration.  Sparger design in CSTRs is usually not considered critical as long as the sparger 

diameter is less than the impeller diameter as the agitator speed largely determines gas 

bubble size and dispersion.  Some CSTRs are also fitted with either cooling coils or a heating 

jacket for temperature sensitive processes. 

While CSTRs are widely used, they do have intrinsic limitations that make them 

unsuitable for many microbial applications.  First, sparger flooding limits the gas throughput.  

Second, the degree of agitation required to provide sufficient gas-liquid mass transfer for 

microbial growth may cause damage to the microorganisms passing through the high shear 

impeller zone [2].  Third, the mechanical energy needed to achieve the desired mixing and 

mass transfer rate is high, resulting in low power efficiencies as well as the need for a heat 

sink to remove heat due to mechanical energy dissipation [2, 8].  Fourth, the sterility of the 

CSTR is hard to maintain over long periods due to the complex mechanical seals needed for 

the impeller shaft.  Fifth, the aeration zone is confined to the impeller region when the media 

is highly viscous, which is commonly encountered in microbial fermentations [2, 8].  Finally, 

due the complexity of CSTRs, they are more expensive and less robust than bubble columns 

and airlift loop reactors.  Due to these shortcomings, much attention has been on and 

continues to be given to, finding more suitable bioreactor designs. 
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2.1.2.2 Bubble Column Reactor (BCR) 

The bubble column reactor (BCR) in its simplest form is a vertical column that is 

pneumatically agitated.  Pneumatic agitation produces ascending bubbles that cause random 

mixing within the BCR.  The degree of mixing and the resulting fluid flow regime 

encountered in a BCR are mainly determined by pneumatic sparging and only slightly 

affected by reactor design.  BCR designs vary greatly in shape, height, diameter, and sparger 

configuration.  BCRs may also be fitted with internals to alter mixing and mass transfer rates.  

The main advantages associated with BCRs are that they are suitable for low viscosity media, 

are energy efficient, may provide a low shear mixing environment, and do not have a 

mechanical agitator.  Due to their simple design and low cost, BCRs are widely used in the 

chemical industry. 

Figure 2.1b shows a simple schematic of a BCR.  Most BCRs are cylindrical in shape 

and built with a height to diameter ratio greater than 2:1; however, square and other unusual 

shaped BCRs do exist [4].  Typically, BCRs have a single sparger located near the bottom of 

the reactor.  Exact sparger design may vary from a single orifice to a series of equally space 

orifices to a porous plate depending on the application.  Some specific applications also 

employ the use of internal diffusers to aide in the reduction of bubble coalescence. 

Even though BCRs are simple and inexpensive to build, their application in microbial 

fermentations is limited.  First, due to their lack of flexibility, BCR design is application 

specific and only works over a narrow range of gas flow rates because of bubble coalescence 

and broth foaming problems [8].  Second, BCRs may have recirculation zones that provide 
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inadequate mass transfer to sustain microbial growth and result in microbial activity 

reduction or death [2]. Third, the narrow range of possible gas flow rates limit BCR mixing 

and mass transfer rates.  Consequently, during the last several decades, much attention has 

been given to BCR modifications [3].  One such modification is the airlift loop reactor. 

2.1.2.3 Airlift Loop Reactor (ALR) 

The airlift loop reactor (ALR) is a modified BCR that covers a wide range of 

pneumatic contacting devices characterized by a defined fluid circulation path within the 

ALR [6, 9-11].  Like BCRs, ALRs are pneumatically agitated by compressed gas and have 

numerous designs.  Unlike BCRs, the major liquid flow patterns in ALRs are defined by the 

reactor design.  Typically, ALRs consist of a fluid pool divided into two individual zones, 

one of which is sparged by gas, resulting in gassed and ungassed zones that have different 

bulk densities [2].  This difference in bulk density causes the fluid circulation pattern typical 

of ALRs.  The main advantages of ALRs over BCR are improved mixing, higher mass 

transfer rates (in some instances), a broader range of gas flow rates, a defined fluid flow 

pattern, and the ability to handle more viscous fluids. 

ALRs are divided into two major classes based upon their structure: (1) the internal 

ALR (Figure 2.1c); and (2) the external ALR (Figure 2.1d) [2, 4, 6, 8, 12].  The internal ALR 

resembles a BCR with the addition of a draught tube or a baffle.  The external ALR (Figure 

2.1d), on the other hand, consists of two pipes connected at the top and bottom to form a 

loop.  The design for both types of ALRs can be further modified allowing for variations in 
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liquid flow, mixing, mass transfer rates, bubble coalescence, and bubble disengagement.  

Some of the geometric modifications are schematically shown in Figure 2.2. 

(b)
Multiple Draught 

Tube Internal ALR

(d)
External Airlift 
Loop Reactor

(c)
Baffle 

Internal ALR

(a)
Draught Tube 
Internal ALR

Gas Gas Gas Gas

 
Figure 2.2: Internal and external loop reactor configurations common encountered in 

the literature. 

Weiland and Onken [9] indicated that of the ALRs shown in Figure 2.2, the external 

loop reactors and the internal loop reactors with concentric draft tubes were most often used 

for single cell protein production.  While the remaining internal loop split shaft and thin 

channel reactors were often used for wastewater treatment.   

ALRs offer several advantages over conventional bioreactors [13].  First, the ALR 

design is simple (similar to a BCR) and has no moving mechanical parts.  Second, the energy 

required for agitation enters the system with the gas.  Third, the shear stresses imposed by 

turbulent mixing are low, which is important for cells that are shear sensitive.  Fourth, scale 

up from pilot-plant data is relatively simple. 
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Regardless of the basic configuration, all ALRs are comprised of four distinct 

sections (Figure 2.3) [2, 6, 14, 15]: 

Riser:  The riser is the main component of the ALR and is the section that defines the overall 

mixing and gas-liquid mass transfer rates of the ALR.  The gas sparger is usually located 

at the bottom of this section, and the flow of gas, liquid, and solids (if present) is 

predominantly an upward co-current multiphase flow.  This section has the lowest fluid 

bulk density and is where most of the gas-liquid mass transfer takes place. 

Downcomer:  The downcomer section runs parallel to the riser and is connected to it at both 

the top and bottom.  The fluid bulk density in the downcomer is higher than the bulk 

density in the riser.  Flow in the downcomer is in the opposite direction of the riser flow; 

a result of the density difference that exists between these sections.  The gas holdup 

(volumetric gas fraction) in this section is related to the riser gas holdup and is mostly a 

function of the ALR design. 

Base:  The base is the section that connects the bottom of the riser to the downcomer and in 

most cases contains the sparger.  Most ALR designs employ a very simple connection 

zone between the riser and downcomer where the primary goal is promoting fluid 

circulation.  The gas sparger is typically located in the base, either just below the lower 

connector as a plate sparger of some type, or just above the lower connector as a single 

orifice nozzle, a multiple orifice ring sparger, or a multiple orifice spider sparger.  Little 

attention has been given to how the design of the base affects the overall reactor behavior 

in the literature.  Most consider the base design to be of little influence on ALR 
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performance; however, some of the more recent work indicate this philosophy may be 

flawed [6]. 

Gas Separator:  The gas separator section connects the top of the riser to the downcomer and 

allows for liquid circulation and gas disengagement.  Fluid residence time in the gas 

separator varies with gas separator design and influences the gas holdup in both the 

downcomer and riser.  The gas separator design has been widely studied and is 

considered one of the key ALR components [14]. 

 
Figure 2.3: External airlift loop reactor schematic showing the four basic reactor 

sections. 
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Although ALRs are thought to be an improvement over BCRs, they still have 

limitations.  First, the ALR, like the BCR, is not suitable for highly viscous fluids.  Second, 

all ALRs have a minimum volume that must be maintained to ensure consistent fluid 

circulation within the reactor.  Third, ALR design is usually reactor and application specific, 

limiting individual ALR usefulness to processes with minimal changes in the operating 

parameters because after the initial geometric parameters are set at design time, the gas 

velocity is the only remaining adjustable parameter [15]. 

ALRs do offer several advantages over CSTRs and BCRs, [2, 4, 5].  First, when 

compared to CSTRs, their simple construction is a distinct advantage.  Since there are usually 

no moving mechanical parts, these reactors have no need for seals and bearings, thus 

reducing the danger of contamination.  Second, the dual functioning injection gas provides 

both aeration and agitation, promoting energy efficiency.  Third, when compared to BCRs, 

ALRs have the advantage of having a fixed circulation path which provides an increased 

capacity for heat and mass transfer and longer gas-liquid contact times.  Fourth, the ALR is 

superior to BCRs and CSTRs as it provides a lower shear stress environment due to the 

directionality of the liquid flow.  Fifth, depending on the geometric configuration, the ALR 

may allow for much higher gas throughputs when compared to BCRs and CSTRs. 

2.1.3 Selection 

All three bioreactor types have been successfully used for a variety of applications.  

To help in reactor selection for a particular application, the following rules of thumb have 
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been suggested to assist in the selection of the appropriate bioreactor and are based on 

specific reactor advantages and disadvantages [4]:  

• For media with a viscosity greater than 0.1 N·s·m-2, a CSTR is recommended. 

• A CSTR is recommended in pilot plant operations that require flexibility in viscosity and 

mass transfer rates because BCRs and ALRs do not offer enough operational flexibility. 

• For large scale (50-500 m3) low viscosity fermentations, BCRs are recommended because 

they are the cheapest to build and operate. 

• For very large scale (200-10,000 m3) low viscosity fermentations, ALRs are 

recommended because they permit local and controlled substrate addition. 

• For shear-sensitive cultures of low viscosity, BCRs or ALRs are recommended as 

pneumatic agitation can provide the low fluid shear. 

• For large scale (>500 m3) high viscosity fermentations, it was indicated that there are no 

good reactors because CSTRs have mechanical problems at this size and pneumatically 

agitated reactors do not function properly with highly viscous media. 

The discussion presented hereafter will focus on using an ALR for syngas 

fermentation.  The decision to select an ALR for this work was not based solely upon the 

above listed criteria, but more so with the intent to understand the baseline mixing and mass 

transfer rates associated with this particular ALR and to identify characteristic mixing and 

mass transfer rate properties for future enhancement work.  
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2.2 Airlift Reactor Fundamentals 

The analysis and description of the hydrodynamic and gas-liquid mass transfer 

behavior for ALRs usually involve the use of parameters such as gas velocity, gas holdup, 

superficial liquid velocity, and mixing [16].  These parameters were reported by Weiland 

[17] to be determined by complex interactions between buoyancy, inertia, friction, and 

hydrostatic pressure.  Due to the large degree of interaction between these parameters, the 

definition of ALR behavior is often quite complex.  Chisti and Moo-Young [18] described 

the hydrodynamics of multiphase systems as being the controlling influence on heat and 

mass transfer, and thus, a thorough understanding of how these parameters affect ALR 

operation is a necessity.  This section will address the definition of these and other 

parameters as they relate to ALRs. 

2.2.1 Superficial Gas Velocity 

Superficial gas velocity (UG) as defined in the literature is dependent upon the cross 

sectional area of the riser and the volumetric inlet gas flow rate according to: 

G
G

r

GU
A

=  (2.1) 

where GG is the volumetric gas flow rate and Ar is the riser cross sectional area.  However, 

other definitions of UG are used when comparing UG for internal ALRs and BCRs where Ar 

may be replaced with the overall reactor cross sectional area. 
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2.2.2 Gas Holdup 

The volumetric gas fraction in a multiphase dispersion is known as gas holdup or gas 

void fraction [2, 5, 19].  The overall gas holdup (ε) is given by: 

G

G L

Vol
Vol Vol

ε =
+

 (2.2) 

where VolG is the gas dispersion volume and VolL is the liquid/slurry volume.  Individual 

riser and downcomer gas holdups, εr and εd, respectively, are commonly reported and can be 

algebraically related to the overall gas holdup via [2]: 

r r d d

r d

A A
A A
⋅ ε + ⋅ε

ε =
+

 (2.3) 

where Ad is the downcomer cross sectional area. 

The importance of gas holdup is multifaceted.  Gas holdup determines the gas phase 

residence time in the liquid phase, and in conjunction with bubble size, it helps determine the 

gas-liquid mass transfer rate [1, 13].   Gas holdup is also important as the total reactor 

volume must be large enough to accommodate the aerated liquid volume for the range of 

desired operating conditions [18].  Though mainly dependant upon fluid properties and gas 

velocity. Gas holdup has a very complex relationship with superficial liquid velocity in 

ALRs, were the two are often functions of one another. 

Onken and Weiland [10] showed that gas holdup was strongly dependent on 

superficial liquid velocity.  When the superficial liquid velocity was low, as in a BCR, gas 

holdup values were observed to be the highest.  When the superficial liquid velocity 

increased, gas holdup decreased.  They attributed the decrease in gas holdup to an 
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acceleration of the gas phase by the moving liquid phase.  Gavrilescu and Tudose [11], Bello 

et al. [20], Russell [16], Choi and Lee [21], and Merchuk [22], as well as many others, 

reported a similar effect of superficial liquid velocity on gas holdup.  Wang et al. [23] 

demonstrated that the relationship between gas holdup and superficial liquid velocity exists 

regardless of reactor size, where they compared a mini ALR (~16 mL) to large-scale ALRs 

(6.5 to 60 L). 

Bello et al. [24] in a comparison of similar sized internal and external ALRs and a 

BCR, discussed how gas holdup varied between the three.  It was observed that the riser gas 

holdup for the BCR and internal the ALR were very similar, but the gas holdup for external 

ALR was significantly lower and depended upon the reactor downcomer to riser area ratio.  

The downcomer gas holdup for the internal and external ALRs was significantly different, 

ranging between 0 to 50% and 80 to 95% of the riser gas holdup, respectively.  The large 

difference in gas holdup was attributed to geometric variations. 

Changes in fluid properties, such as viscosity, surface tension and ionic strength were 

reported to have a slight effect on gas holdup [2].  Note, however, that Gavrilescu and 

Tudose [11] indicated that liquid property variations had a stronger influence on gas holdup 

in smaller systems. 

2.2.3 Slip Velocity 

The gas bubble velocity relative to the liquid velocity through which it is moving is 

called the slip velocity.  The slip velocity is one of the main parameters that determine the 
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gas volume in the system.  However, the slip velocity is seldom discussed in the literature in 

regard to ALRs; instead, more attention is given to the superficial liquid velocity and gas 

holdup, which are functions of the slip velocity. 

2.2.4 Mixing Time 

Mixing time is defined as the time required to achieve a specified quality of mixing 

after the addition of some feed [13, 25].  An understanding of this parameter is very 

important in fermentation processes as there is a risk that cell damage may occur if local 

additive concentrations exceed permissible levels.  In continuous reactors the mixing time is 

commonly expressed as the residence time and used extensively as a key parameter in ALR 

modeling. 

2.2.5 Superficial Liquid Velocity 

The liquid circulation in an ALR for a given reactor geometry, fluid type, and 

superficial gas velocity is determined by the difference in riser and downcomer gas holdup.  

The difference in riser and downcomer gas holdup creates a hydrostatic pressure difference 

between the bottom of the riser and the bottom of the downcomer, which in turn acts as the 

driving force for liquid circulation.  A mean circulation velocity ULc is defined as [1]: 

c
Lc

c

xU
t

=  (2.4) 

where xc is the circulation path length and tc is the average circulation time for one complete 

circulation. 
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However, liquid circulation is not commonly used as a characteristic parameter for 

gas-liquid contactors.  The superficial liquid velocity in the riser (ULr) or downcomer (ULd) 

are more commonly used as they are more meaningful and allow for direct comparison of 

liquid circulation rates in vessels of varying sizes.  The superficial liquid velocity is different 

from the true linear velocity because the liquid flow occupies only a portion of the flow 

channel.  The riser and downcomer linear velocity (VL) and superficial velocity (UL) are 

related as follows [2]: 

Lr
Lr

r

UV
1

=
− ε

 (2.5) 

and 

Ld
Ld

d

UV
1

=
− ε

 (2.6) 

While the superficial liquid velocity is a function of riser and downcomer gas holdup, 

it also influences these holdups.  In order to change the superficial liquid velocity in an ALR, 

the geometry of the reactor must be altered or the gas velocity must be changed.  In some 

cases, a throttling device may be installed somewhere in the reactor loop to regulate the 

superficial liquid velocity, independent of the superficial gas velocity [26]. 

The superficial liquid velocity has been shown to be a distinct function of the 

superficial gas velocity [27].  In addition, it has been shown that the superficial liquid 

velocity rate of growth with superficial gas velocity was very rapid at low superficial gas 

velocities, but eventually the superficial liquid velocity reached an asymptotic value.  The 
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relationship between these two velocities is affected by the area ratio, where smaller 

downcomer areas cause the asymptotic value to be reached at a lower superficial gas 

velocity.  This suggests that the airlift effect is significantly reduced as the downcomer area 

is reduced. 

From an operational stand point, the superficial liquid velocity is what sets an ALR 

apart from a BCR.  For example, BCRs typically have only a low fixed local superficial 

liquid velocity as shown in Figure 2.4, while ALRs may have an overall superficial liquid 

velocity over an order of magnitude higher.  In fact, if the superficial liquid velocity becomes 

too high, it may adversely affect overall mass transfer rates as gas residence times become 

too short [14, 28].  The superficial liquid velocity has been shown to influence most of the 

other hydrodynamic and mass transfer parameters, including the mean gas phase residence 

time, bubble size, overall mass transfer rates, and mixing time [25].  Accordingly, the 

superficial liquid velocity is reported as one of the key parameters in ALR design and scale-

up [13]. 
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Figure 2.4: Possible operating conditions for BCRs and ALRs, adopted from Merchuk 

[22]. 

2.2.6 Flow Regimes 

The multiphase flow hydrodynamics in gas-liquid contactors have a controlling 

influence on both the interphase and bulk transport phenomena.  Typically, the 

hydrodynamics in ALRs are characterized by four flow regimes identified in Figure 2.5 [3, 

18, 29, 30]: 

Homogeneous (Bubbly) flow:  At low gas inputs, gas bubbles rise nearly vertically with little 

interaction.  This is known as the unhindered bubble, homogeneous, or bubbly flow 

regime.  This regime is also characterized by a nearly uniform radial distribution of 

equally size bubbles [30]. 

Transitional flow: As the gas flow increases, bubbles begin to interact and may eventually 

coalesce.  This forms the transitional flow regime that bridges the homogeneous and 

turbulent flow regimes. 
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Heterogeneous (Turbulent) flow: Heterogeneous flow occurs when bubble-bubble 

interactions become common, leading to large bubble formation.  Large bubble formation 

in this flow regime is typically very random in which bubble size varies widely.  This 

regime is also known as the turbulent or churn-turbulent flow regime. 

Slug flow: Slug flow, an extreme heterogeneous flow regime condition, occurs at very high 

gas velocities with large bubble formation.  The size and frequency of the large bubbles 

in this regime increase with gas flow.  The large bubbles may have diameters 

approaching the tube diameter in small diameter columns. 

 
Figure 2.5: Typical hydrodynamic flow regime encountered in ALRs, adopted from 

Chisti and Moo-Young [18]. 

The volumetric gas flow rate range for a particular flow regime largely depends upon 

the reactor riser diameter, area ratio, effective reactor height, sparger design, superficial 

liquid velocity, and fluid properties [3, 18].  Identification of these flow regimes is very 

important for biological applications, as it is most desirable to operate in the homogeneous 

condition to prevent regions of high shear, which can be detrimental in some biological 

fermentations [31].  Also, from a gas-liquid mass transfer stand point, is it desirable to 
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operate in the homogeneous and transitional flow regimes to prevent slugging, where large 

bubbles reduce gas-liquid contact time and contact area, creating a poor gas-liquid mass 

transfer environment. 

2.2.7 Area Ratio 

One of several defining characteristics for ALRs is the ratio of riser and downcomer 

cross sectional areas.  The area ratio for a specific ALR is typically defined as follows: 

d

r

A Downcomer Cross Sectional AreaAR
A Riser Cross Sectional Area

= =  (2.7) 

The area ratio (AR) is significant for many reasons.  AR is used as a key 

dimensionless parameter for ALR comparison and scale-up.  It is also used for modeling 

purposes to predict gas holdup, superficial liquid velocity, and mass transfer, as well as being 

used in calculations to relate superficial liquid velocity and gas holdup in the riser and 

downcomer. 

2.2.8 Overall Gas-Liquid Mass Transfer Coefficient 

The transfer of gas from the gas phase to a microorganism suspended in a multiphase 

medium must take place along a certain pathway.  Figure 2.6 schematically describes the 

general transport route.  As shown in Figure 2.6, eight resistances to gas mass transfer may 

exist [32]: 

(1) in the gas film inside the bubble 

(2) at the gas-liquid interface 
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(3) in the liquid film at the gas-liquid interface 

(4) in the bulk liquid 

(5) in the liquid film surrounding the cell 

(6) at the liquid-cell interface 

(7) the internal resistance 

(8) at the site of the biochemical reaction 

Gas Film

Gas-Liquid Interface

Liquid Film

Bulk Liquid

Liquid Film

Cell-Liquid Interface

Internal Cell
Resistance

Biochemical
Reaction

Cell

Gas
Bubble

 
Figure 2.6: Mass transfer resistances encountered in gas-liquid dispersions containing 

active cells, adapted from Chisti [2]. 

It should be noted that all resistances are purely physical except for the last one and 

that not all mass transfer resistances may be significant for a given system.  Many of the 

resistances may be neglected in most bioreactors except for those around the gas-liquid 
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interface [2, 32].  Thus, the transport problem is greatly simplified to a gas-liquid interfacial 

mass transfer problem. 

To further simplify the transport problem, the two-film theory developed in 1923 by 

Whitman is commonly used as a starting point for understanding mass transfer across a phase 

boundary [2, 33-35].  According to the two-film model, the mass transfer resistance across 

the gas-liquid interface can be characterized by two thin films, one for each of the phases in 

contact with the interface, which itself is assumed to offer no resistance to mass transfer.  

Fluid motion in each of the thin films is assumed stagnant, which, if true, means that 

transport in the films occurs solely by molecular diffusion.  Thus, at steady state, a linear 

concentration gradient exists allowing the molar flux (JA), to be related to the molar 

concentration gradient (ΔC), in the respective film and the film thickness (Δx), using Fick’s 

First Law: 

A
DJ C
x

= Δ
Δ

 (2.8) 

where D is the molecular diffusion in the film.  The ratio of D/Δx is known as the overall 

mass transfer coefficient, k. 

Equation (2.8) may be rewritten for the gas and liquid films as follows: 

( )A G G GiJ k C C= −  (2.9) 

( )L Li L     k C C= −  (2.10) 

where kG and kL are the gas and liquid film mass transfer coefficients, respectively, and CG, 

CGi, CLi, and CL are the molar concentrations in the gas phase, gas phase interface, liquid 
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phase interface, and the liquid phase concentrations, respectively.  This pair of equations can 

be further reduced as the interfacial concentrations are assumed to be in equilibrium.  The 

resulting mass flux equation may be expressed in terms of the overall concentration driving 

force as follows: 

( )*
A L LJ K C C= −  (2.11) 

where KL is the overall mass transfer coefficient based on the liquid film and C* is the 

equilibrium gas concentration in the liquid.  C* is related to CG using Henry’s law [36]: 

*
GC HC=  (2.12) 

where H is Henry’s constant.  It can also be shown that [2] 

L L G

1 1 1
K k Hk

= +  (2.13) 

Equation (2.13) may be further reduced as well.  For sparingly soluble gases such as oxygen, 

carbon monoxide, and hydrogen, H is much greater than unity.  Furthermore, kG is typically 

much greater than kL [2] and the gas film thickness is much smaller than the liquid film 

thickness.  For these conditions, the second term on the right of Equation (2.13) becomes 

negligible leaving: 

L L

1 1
K k

≈  (2.14) 

This implies that nearly all the resistance to mass transfer for a sparingly soluble gas 

occurs in the liquid side film at the gas-liquid interface.  In other words, mass transfer is 

liquid-film controlled. 
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For gas-liquid systems, the assumption that mass transfer in the liquid film is only by 

diffusion is not always representative of actual conditions because turbulent eddies can 

penetrate this film.  Additionally, the assumption that mass transfer is constant with time may 

not be applicable to gas-liquid systems involving transient conditions.  Thus, other mass 

transfer models may be more appropriate for mobile gas-liquid interfaces.  These include the 

penetration theory developed by Higbie, the surface renewal and random surface renewal 

theories of Danckwarts, the film-penetration theory of Toore and Marchello, and boundary 

layer theory [2, 33-35].  Detailed reviews of these theories may be found in texts detailing 

mass transfer across a phase boundary [33-35].  All of these models can be used to relate 

transport flux to a concentration difference and an overall mass transfer coefficient.  The 

liquid side mass transfer coefficient can be estimated using each of the models as follows: 

L
L

Dk
x

=
Δ

 (two-film theory) (2.15) 

L
L

e

4Dk
t

=
π

 (penetration theory) (2.16) 

L Lk D s=  (surface renewal theory) (2.17) 

( ) ( )2 2
L e

i i L / D tL
L

i 1e

Dk 1 2 e
t

=∞ −

=

⎛ ⎞= + ∑⎜ ⎟π ⎝ ⎠
 (film-penetration theory) (2.18) 

L L Dk (D E )≈ +  (boundary layer theory) (2.19) 

In bioreactors the fluid properties and operating temperature more or less fix the gas 

diffusivity through a liquid (DL).  Hence any change to kL must be accomplished by changing 

the liquid film thickness (Δx), the exposure time (te), the surface renewal rate (s), or the eddy 
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diffusivity (ED), all of which are functions of the reactor hydrodynamics.  However, the 

direct calculation of kL using Equations (2.15) - (2.19) is nearly impossible due to the 

inability to accurately quantify film thickness, exposure time, surface renewal rates, and eddy 

diffusivity in a bioreactor.  Although kL may not be directly calculated using one of the above 

equations, it is generally proportional to (DL)m where m may vary from ½ to 1 depending on 

the mechanism of mass transfer that dominates for the given physical and hydrodynamic 

conditions [2, 33-35]. 

The mass transfer rate and molar flux are related by: 

L
L A

dC a J
dt

=  (2.20) 

where aL is the interfacial area per unit liquid volume.  By combining Equations (2.11), 

(2.14), and (2.20), the gas-liquid mass transfer rate may be written as: 

( )*L
L L L

dC k a C C
dt

= −  (2.21) 

In practice, aL = a and kLaL is lumped together to form as a single term (kLa) due to 

the complexities involved in calculating either term individually.  The overall volumetric 

mass transfer coefficient (kLa) is typically determined experimentally using Equation (2.21) 

and gas concentration verses time data for a given bioreactor.  A discussion of the methods 

used to experimentally measure gas concentration with respect to time for transient 

conditions is presented later in Section 2.4.1. 

Once an experimental value for kLa has been determined for a specific gas in a gas-

liquid contactor, it may be used to determine the kLa for another gas species in a similar 
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system.  The estimation of kLa for a gas species based upon data for another gas species must 

be done using the proper transformation techniques based upon the best available mass 

transfer theory for a given system.  The equation used to transform kLa from species A to 

species B is [2, 33]: 

( ) ( )
n

LB
L LB A

LA

Dk a k a
D

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (2.22) 

where n ranges from ½ to 1 depending on the mass transfer theory used.  Typically, for the 

two-film theory n = 1, for the penetration, surface renewal, and film-penetration theories 

n = ½, and for the boundary layer theory n = ⅔.  In applying this transformation, care must 

be taken to ensure that all factors such as fluid type, temperature, flow rate, location, depth, 

pressure, and so on remain constant for species B if the transformation is to be even remotely 

accurate.  Note that Equation (2.22) is based upon theoretical relationships that may or may 

not represent the system under consideration.  In fact, the use of Equation (2.22) has been 

observed to lead to large discrepancies [2].  Finally, the kLa as shown in Equation (2.21) is a 

scalar and should therefore be independent of the direction of the concentration driving force, 

meaning that kLa for desorption and adsorption should be equal for similar conditions. 

2.3 Airlift Reactor Performance 

Investigators have reported that the performance of ALRs depend on geometric 

parameters as well as operational conditions [21, 26, 37].  Siegel and Robinson [15] 

suggested that geometric factors such as reactor height, aspect ratio, downcomer to riser area 
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ratio, base diameter, and gas separator define ALR operation and influence pressure drop 

around the reactor loop.  Likewise, Bentifraouine et al. [38, 39] identified seven similar 

parameters that when changed, modify ALR performance: (i) the gas and liquid physical 

properties, (ii) the downcomer to riser area ratio, (iii) the top and bottom horizontal connector 

geometries, (iv) the gas separator design, (v) the non-aerated liquid height, (vi) the reactor 

height, and (vii) the gas sparger design.  As all of these parameters have been found to affect 

ALR operation in some fashion, they will be discussed in one of the following sections on 

height, area ratio, gas separator, gas sparger, internals, and fluid property effects. 

2.3.1 Height 

When considering ALR height effects, two heights are usually considered.  The first 

is the effective reactor height which refers to the distance from the base to the gas separator.  

The second is the unaerated liquid height in the reactor which refers to the distance from the 

base to the top of the liquid in the riser. 

Bentifraouine et al. [39] used an external ALR to study changes in the effective 

reactor height.  In this work the effective reactor height varied between 1 to 1.6 meters.  As 

the height increased, the superficial liquid velocity was observed to significantly increase.  

The increase in superficial liquid velocity was attributed to an increase in the hydrostatic 

pressure difference between the riser and downcomer.  As the superficial liquid velocity 

increased, the gas phase residence time was reported to decrease, resulting in a reduction in 
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gas holdup.  Chisti [2] and Russell et al. [16] reported the same trend in similar studies with 

an internal ALR. 

In contrast, Snape et al. [40] found that as the effective reactor height was increased, 

the gas holdup increased.  This change in behavior from that reported earlier was attributed to 

dissimilar hydrodynamic conditions in the reactors studied.  Although gas holdup was shown 

to change with the effective reactor height, the superficial liquid velocity remained 

unchanged for the effective reactor heights studied by Snape et al. [40]. 

Bentifraouine et al. [38, 39] also considered how changing the unaerated liquid height 

affected overall gas holdup and superficial liquid velocity while maintaining a constant 

effective reactor height.  When the unaerated liquid height was less than the effective reactor 

height, the superficial liquid velocity increased and the gas holdup decreased as the unaerated 

liquid height increased.  On the other hand, when the unaerated liquid height was equal to or 

greater than the effective reactor height, gas holdup and superficial liquid velocity were 

independent of unaerated liquid height.  Snape et al. [40] also studied the relationship 

between unaerated liquid and effective reactor height and reported that liquid height changes 

did not affect ALR operation; however, the unaerated liquid height was always greater than 

the effective reactor height in their study. 

In a review of previously published research, Siegel and Merchuk [28] discussed how 

ALR height influenced overall mass transfer coefficients.  The overall mass transfer 

coefficient was reported to increase as the effective reactor height increased.  The increase in 
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the overall mass transfer coefficient was thought to be due to the longer gas phase residence 

time in the reactor.  Nakanoh and Yoshida [41] reported a similar trend. 

2.3.2 Gas Separator 

The importance of the gas separator has been neglected by many, while it is claimed 

by some to be one of the most important geometric factors influencing ALR operation [14].  

The degree of bubble disengagement in the gas separator was shown to be a key 

consideration as the gas separator directly affects the superficial liquid velocity and gas 

holdup in an ALR.  The three most common gas separators considered in the literature are 

shown in Figure 2.7.  The tank separator is commonly used for both internal and external 

ALRs and has been extensively studied, while the tube and vented tube gas separators are 

used exclusively in external ALRs. 

(a)
Tube Separator

(b)
Vented Tube 

Separator

(c)
Tank Separator

 
Figure 2.7: Gas separators commonly encounter in external airlift loop reactors. 
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2.3.2.1 Tank Separator 

Seigel et al. [42] compared many tank gas separator configurations and showed that 

decreasing the fluid residence time in the gas separator increased downcomer gas holdup and 

reduced superficial liquid velocity.  In that study, the fluid residence time in the gas separator 

was altered by changing the size of the separator and by changing the unaerated liquid height.  

They concluded that, until a critical fluid volume in the gas separator was reached, the liquid 

level played a predominant role in controlling gas recirculation and superficial liquid 

velocity.  Once the critical fluid volume in the gas separator was reached, the separator size 

no longer dominated flow characteristics.  Therefore, increasing the gas separator volume can 

decrease kLa, but an increase in aerated liquid volume creates a balancing effect that can be 

used to optimize a reactor performance. 

Using a different tank gas separator, Al-Masry [43] studied the effect of changing the 

fluid volume in the gas separator.  The fluid volume in the separator was increased from 0 to 

37% of the total reactor volume to determine its influence on gas holdup and superficial 

liquid velocity.  Gas holdup and superficial liquid velocity were found to only be affected by 

the separator fluid volume when it was in the range of 0 to 11% of the total reactor volume.  

Further increases in the fluid volume had little, if any, influence on gas holdup and 

superficial gas velocity.  Similarly, Choi [44] found that varying the unaerated liquid height 

in the tank separator had the same effect.  As the unaerated liquid height was varied from 0 to 

8 cm, gas holdup and superficial liquid velocity were observed to change as noted by Al-

Masry [43], after which any further increases in the liquid height did not result in any 
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significant gas holdup or superficial liquid velocity changes.  Al-Masry [45] reported similar 

results in a subsequent study using a smaller ALR.  However, in this new study, the volume 

in the liquid separator was found to affect gas holdup and superficial liquid velocity as the 

volume ranged from 0 to 30% of the total reactor volume.  Thus, the reactor volume and 

ALR area ratio were found to influence how the gas holdup and superficial liquid velocity 

reacted to gas separator effects.  

Experiments by Merchuk et al. [46] revealed that the design of the gas separator was 

an important factor affecting mass transfer rates.  Their study revealed that as the gas 

separator volume increased, the overall mass transfer coefficient decreased.  This trend was 

not observed at low superficial gas velocities, but became pronounced as superficial gas 

velocity increased.  As discussed earlier, superficial liquid velocity was shown to increase as 

the gas separator volume grew; thus, this decreased the gas-liquid contact and reduced the 

overall mass transfer coefficient as the gas separator volume increased. 

These studies indicate that the fluid residence time in the gas separator can be 

manipulated to control gas recirculation, superficial liquid velocity, gas holdup, and overall 

mass transfer coefficients. 

2.3.2.2 Tube Separators 

Bentifraouine et al. [38] modified a tube gas separator by adding vents to it and 

exploring how this affected ALR operation.  They reported that when the vents were closed, 

perfect gas separation was not achieved and gas buildup occurred in the horizontal connector 
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creating a resistance to liquid flow.  For this case, they also saw that beyond a critical value 

of superficial gas velocity, the superficial liquid velocity peaked and then decreased.  Choi 

[47] and Siegel et al. [28] reported for similar reactor configurations that superficial liquid 

velocity was restricted in tube gas separators without a vent.  The decrease in superficial 

liquid velocity reported by both authors was due to the air buildup in the tube connector that 

reduced the open cross-sectional area of the tube connector; thus, changing the effective 

downcomer to riser area ratio.  Additionally, these authors observed that the size of the gas 

buildup in the horizontal connector grew rapidly and then collapsed, causing the superficial 

liquid velocity to surge in a periodic fashion. 

When the tube connector was vented however, Bentifraouine et al. [38] reported a 

drastic change in the tube gas separator performance.  In this case, the superficial liquid 

velocity continued to increase as the superficial gas velocity increased and a local maximum 

was not observed.  Likewise, Choi [47] reported that for identical conditions, the superficial 

liquid velocity was higher in an ALR with a vented tube gas separator than in an unvented 

one.  Both studies also reported that gas holdup was lower for the ALR with the vented tube 

separator. 

Increasing the horizontal connector length in a tube separator was observed to have 

two competing effects [21].  As the horizontal connecter length was increased, the fluid 

residence time in the gas separator increased and the downcomer gas holdup decreased 

causing an increase in the superficial liquid velocity.  The frictional losses were also 

observed to increase causing a decrease in the superficial liquid velocity.  In general, the 



www.manaraa.com

 37

decrease in superficial liquid velocity due to frictional losses was smaller than the increase 

caused by changes in the downcomer gas holdup.  Hence, an overall increase in the 

superficial liquid velocity in the ALR was observed as the horizontal connector length was 

extended.  It is plausible, however; that at some point, an increase in connector length will 

cause the frictional losses to dominate, resulting in a superficial liquid velocity reduction.  

Moreover, the riser and downcomer gas holdups and the overall mass transfer coefficient 

were found to decrease as the connector length was extended [47]. 

2.3.3 Area Ratio 

The downcomer to riser area ratio has been reported to be the geometric parameter 

having the most influence on liquid flow patterns in ALRs [11, 37, 48].  Weiland [17] studied 

the effect of downcomer to riser area ratio using internal ALRs and found that changing the 

downcomer to riser area ratio affected gas holdup, liquid circulation velocity, mass transfer, 

and mixing time.  They reported that no optimal area ratio existed and that the area ratio 

influence was process specific.  Subsequently, it was suggested that restriction valves be 

placed in the downcomer to provide operational flexibility. 

The downcomer to riser area ratio was shown to influence the hydrodynamics of an 

external ALR in two ways [48].  For a given superficial gas velocity and riser area, 

increasing the downcomer area lowered the resistance to flow in the downcomer, leading to 

an increase in superficial liquid velocity with no change in the hydrodynamic driving force.  

The downcomer to riser ratio also influenced the overall friction factor in the ALR, and 
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changes in riser and downcomer diameters were observed to directly affect the hydrodynamic 

driving force and liquid circulation.  An increase in the downcomer to riser area ratio resulted 

in a higher superficial liquid velocity.  Merchuk [27], Bello et al. [24], and Choi and Lee [21] 

observed that as the downcomer area was increased, the superficial liquid velocity increased 

too.  Popovi and Robison [26] reported a similar trend where a change in the downcomer to 

riser area ratio from 0.11 to 0.44 resulted in a four-fold increase in superficial liquid velocity. 

Bendjaballah et al. [49] illustrated the effect of changing the area ratio in a study that 

utilized a restriction valve in the downcomer where the flow field was changed from 

completely unobstructed to completed blocked in incremental steps.  Results of this work 

showed that gas holdup varied only slightly as the valve was closed from 100% open to 40% 

open, but a significant change was observed as the valve was closed further.  In addition, the 

superficial liquid velocity was shown to decrease as the valve was closed. 

The overall mass transfer coefficient in ALRs was observed to increase as the 

downcomer to riser area ratio decreased [11, 21, 24, 43, 50]; this increase was attributed to a 

superficial liquid velocity decrease and gas holdup increase.  In another study, Choi [47] 

observed the same trend; however, the decrease in the overall mass transfer coefficient was 

small. 

2.3.4 Gas Sparger 

In general, the influence of sparger type is rather complex and is mostly a function of 

fluid properties.  The sparger plays a role in the resulting ALR bubble size and gas holdup, 
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which can be influenced by fluid coalescence.  Thus, sparger design may play an important 

role in overall reactor design depending on the specific fluid properties. 

As reported in the literature, bubble formation in an ALR can be accomplished by 

means of a variety of gas spargers, typically classified as either static or dynamic [18].  

Dynamic spargers consist of injector nozzles and venturies that rely on the kinetic energy of 

a liquid jet to disperse the gas.  Figure 2.8 shows some typical dynamic spargers use in BCRs 

and ALRs [2, 51].  Dynamic spargers are complex in design, require the use of a pumping 

device, and have areas of high shear.  Because of this, they are not commonly used in 

bioreactors.  Static spargers, on the other hand, consist of perforated plates on tubes that are 

cheap to make and operate.  Most static spargers reported in the literature can be divided in to 

four main categories (Figure 2.9): single orifice nozzles, perforated plates, perforated 

rings/pipes, and porous plates.  Single orifice nozzles and perforated plates and pipes have 

been reported to be the least expensive to install and operate, while porous plates have been 

reported to be more expensive, prone to blockage, and have higher operating costs [18].  Of 

the static sparger types, the perforated plate is normally used in bioreactor applications, 

although the porous plate has been used [19]. 
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Figure 2.8: Dynamic gas spargers commonly used in pneumatic gas-liquid reactors, 
adopted from van Dam-Mieras et al. [51]. 
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Perforated Plate
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Perforated Ring  

Figure 2.9: Static spargers commonly encounter in pneumatic gas-liquid reactors, 
adapted from van Dam-Mieras et al. [51]. 

Two important elements of sparger design are orifice size and open area ratio [27].  

These are reported to be significant as they determine the initial size and number of bubbles 

in the reactor.  Nonetheless, the significance of sparger design for coalescing fluids is often 

disputed in the literature.  Sparger orifice size and number have been reported by some to 

significantly influence ALR hydrodynamics [27, 40, 52].  However, there are others that 
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insist that the number and size of orifices does not affect ALR hydrodynamics [2, 22, 31, 53], 

claiming that the effect of sparger design on ALR hydrodynamics was tied to other design 

considerations.  For non-coalescing fluids, however, there seems to be a consensus in the 

literature that sparger design is important because the initial ALR bubble size is preserved as 

the bubbles rise up the reactor [18]. 

In addition to orifice size and open area ratio, Merchuk et al. [46] indicated that the 

ability of a sparger to evenly distribute gas through all the orifices was a key consideration in 

sparger design.  They suggested that a Weber number (based on orifice diameter) greater 

than two guarantees the sparger’s ability to evenly distribute gas.  If the Weber number was 

less than two, they indicated that care must be taken to ensure that weeping does not occur at 

inactive orifices. 

In a study that compared ten single orifice nozzles and perforated plates, it was found 

that reactor hydrodynamics were only slightly affected at low superficial gas velocities [53].  

Onken and Weiland [10] also reported that gas sparger type had little influence on ALR gas 

holdup.  However, Merchuk [27] and Bendjaballah et al. [49] compared a single orifice 

sparger to a perforated plate and showed a significant difference in gas holdup.  They found 

that gas holdup increased differently with superficial gas velocity for single and multiple 

orifice spargers, and that the magnitude of superficial liquid velocity only varied with 

superficial gas velocity.  Snape et al. [40] also observed that gas holdup was a function of gas 

sparger design for gas spargers having an equal open area ratio with different orifice 
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diameters.  Variations in gas holdup were ascribed to the flow regime transition point 

happening at different superficial gas velocities due to initial bubble size. 

For a fixed orifice diameter, Vasconcelos et al. [54] found gas holdup to be dependent 

on the superficial gas velocity.  However, as the orifice diameter was increased from 0.5 to 

3 mm for a constant superficial gas velocity, gas holdup decreased due to the generation of 

larger bubbles, which resulted in a higher terminal bubble rise velocity and a shorter 

residence time in the riser. 

Siegel and Merchuk [28] found that, for coalescing fluids, porous plate spargers 

performed much better than orifice type spargers at low gas rates, but that as the gas flow rate 

increased, the performance dropped off due to increased bubble coalescence at the plate 

surface.  In a comparison of porous and perforated plates at low superficial gas velocities, 

Lin et al. [52] reported that porous plates provided a more uniform radial bubble distribution 

than perforated plates.   

Chisti and Moo-Young [18] evaluated the effected of sparger location on ALR 

hydrodynamics and found that when the sparger was located at the base of the riser, as is 

typically done in BCRs, the recirculating fluid flow from the downcomer caused an uneven 

gas distribution and resulted in a higher concentration of gas bubbles along the opposite side 

of the riser (Figure 2.10a).  To improve the bubble distribution in the reactor base, they 

proposed that the gas sparger be located just inside the riser and that the base be filled with 

inert material to prevent dead zones (Figure 2.10b).  Merchuk et al. [46] also reported that the 
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size and shape of the base connector played an important role in ALR behavior, where if the 

base connector was small in size, it restricted liquid flow and increased gas holdup. 

 
Figure 2.10: Fluid flow patterns observed in external airlift loop reactors for two reactor 

base styles, adopted from Chisti [2]. 

Siegel et al. [42] studied sparger location effects and considered the effect of moving 

the sparger further up the riser.  They found that raising the level of the gas sparger above a 

critical point decreased riser gas holdup.  Most of the gas holdup change, however, was 

attributed to the unaerated region below the sparger and not to flow changes above the 

sparger.  On the other hand, when the sparger was below the critical point, there was no 

reported affect on gas holdup.  Furthermore, they reported that sparger configuration and 

orifice size did not influence gas holdup or superficial liquid velocity. 

Some researchers have considered the addition of a second sparger to the downcomer 

as a method of providing additional control over ALR flow characteristics and increasing 

overall mass transfer rates [42].  In this type of system, fresh gas was also introduced near the 

downcomer entrance to decrease the time that the fermentation process was gas starved in the 
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downcomer.  As a result, the superficial liquid velocity was sharply reduced throughout the 

reactor causing a subsequent increase in gas holdup, even though the gas throughput in the 

reactor was not increased.  However, the use of an additional sparger in the downcomer also 

presented some operational challenges because if the difference between the liquid and gas 

velocities in the downcomer were too small, an unstable flow condition was created where 

the direction of fluid flow oscillated.  To overcome the oscillation, higher liquid velocities 

had to be maintained. 

Miyahara et al. [53] also compared the overall mass transfer coefficients for multiple 

sparger designs.  Although they reported that ALR hydrodynamics did not vary for their 

experimental conditions, the overall mass transfer rates varied significantly.  A perforated 

plate, which had the smallest orifice diameter, exhibited a much higher overall mass transfer 

coefficient when compared to a single orifice nozzle for similar operating conditions.  The 

difference in overall mass transfer coefficients for the various gas spargers was noted to be 

more pronounced at lower superficial gas velocities. 

2.3.5 Internals 

Auxiliary internals such as impellers [1], projecting baffles [55-57] and static mixers 

[58, 59] have been the subject of some study, with the intent to improve mixing and mass 

transfer while limiting bubble coalescence.  In general, it has been shown that these devices 

can enhance gas holdup and mass transfer while either reducing or enhancing mixing, 

depending on the internal [18].  The introduction of static mixers has two important roles in 
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mass transfer enhancement: (i) bubble redispersion and (ii) increased interfacial turbulence 

during bubble coalescence and redispersion [60]. 

Partitioning plates and baffles have been reported to improve mass transfer, increase 

gas holdup, and decrease liquid circulation [55-57].  Much of the improvement in mass 

transfer was the result of smaller bubble sizes and uniform gas holdup throughout the system.  

The overall mass transfer coefficient also increased with the number of partitioning plates 

[55].   

Nikakhtari and Hill [58, 59] modified an ALR by adding a section of structured 

packing.  The addition of packing increased gas holdup by up to 37% and decreased the 

superficial liquid velocity by nearly 53%.  The lower superficial liquid velocity and higher 

gas holdup increased mass transfer by nearly a factor of four when compared to a similar 

ALR without packing.  They also reported there was no significant change in operating costs 

for the packed bed ALR relative to the unpacked ALR.  Chisti et al. [61] likewise studied 

mass transfer enhancement in different liquids using static mixers.  They also reported that 

the overall mass transfer rate was higher when an internal packing was used. 

A mechanically agitated internal ALR was used by Chisti and Jauregui-Haza [62] to 

evaluate the effect of additional mixing.  The mechanical agitator was found to increase gas 

holdup and mass transfer as the impeller speed increased.  In view of the improvements to 

gas holdup and mass transfer, the use of impellers did come at a cost to the overall energy 

efficiency of the system.  Hence, the mechanically agitated ALRs may be well suited only for 

certain applications where low energy efficiency is acceptable. 
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2.3.6 Liquid Phase Properties and Hydrodynamics 

Liquid phase properties such as ionic strength, surface tension, and viscosity have 

been reported by many to have a significant affect on ALR operation [9, 40, 63].  However, 

the degree to which liquid phase properties influence ALR operation varies widely depending 

on operating conditions and reactor geometry.  Onken and Weiland [63], as well as others 

[20, 64], showed that while physical properties greatly influence BCR operation, ALR 

operation was not affected to the same degree. 

Weiland and Onken [25] reported that experiments with different electrolytes without 

liquid circulation showed that the gas holdup increased with electrolyte concentrations until a 

critical ionic strength was achieved.  At which point, the maximum inhibition of bubble 

coalescence was reached.  Zahradnik et al. [65] also investigated the addition of various salt 

solutions to the liquid phase in a BCR.  The effect of adding salt solutions on gas holdup 

depended upon reactor flow regime.  For heterogeneous flow regimes, gas holdup was only 

slightly affected, but for the homogeneous flow regime, significant variations in gas holdup 

were observed.  Weiland and Onken [25] reported a maximum change in gas holdup at a 

critical salt concentration.  In a study of electrolyte concentration on bubble coalescence, 

Prince and Blanch [66] indicated that salts inhibit bubble coalescence by retarding the 

thinning of the bubble film making the bubble film more rigid.  Consequently, gas holdup 

increased with the addition of electrolytes to pure media. 

Onken and Weiland [63] also studied the affect of liquid properties on gas holdup in 

an ALR by adding sugar, 2-propanol, or sodium chloride to the liquid phase in the following 
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percentages:  sugar at 34.7 wt% and 51.8 wt%; 2-propanol at 1.65 vol% and 4.90 vol%; and 

sodium chloride at 0.1M and 0.4M.  Gas holdup as a function of superficial gas velocity was 

then observed to be nearly identical for pure water and water containing sodium chloride, 

while gas holdup varied between pure water and water containing sugar and 2-propanol.  The 

gas holdup for water with sugar and 2-propanol was slightly higher than pure water, with the 

largest difference noted at low superficial gas velocities.  In a comparison between BCR and 

ALR reactors using pure water and a sodium chloride solution, Bello et al. [20] reported a 

similar trend in which the gas holdup data was generally about 10% higher for the 0.15M 

sodium chloride solution.  McManamey et al. [64] observed slight changes in gas holdup 

with electrolyte concentration in an external ALR. 

Nicol and Davidson [67] investigated the effect of n-octanol and bovine serum 

albumen addition to the fluid phase and reported a change in bubble size due to a suppression 

of bubble coalescence.  However, they reported no change in overall gas holdup when these 

surfactants were added. 

Snape et al. [40] used saccharose and various salts to evaluate how different additives 

changed the fluid phase behavior.  The saccharose solutions had little affect on gas holdup at 

the lowest gas flow rates, while exhibiting a slight affect at higher gas flow rates.  Unlike gas 

holdup, superficial liquid velocity varied significantly with saccharose concentration for all 

considered flow rates.  The addition of saccharose solutions also altered the superficial liquid 

velocity trends with an increasing gas flow rate.  As the gas flow rate increased, the 

superficial liquid velocity increased faster and exhibited a local maximum under some 
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operating conditions.  The experimental data for the various salt solutions again showed that 

gas holdup only increased slightly with the addition of salt up to a critical salt concentration, 

at which point no further affect was reported.  The one exception was at high electrolyte 

concentrations, where the addition of salt had a tendency to reduce gas holdup.  Gas holdup 

was also reported to be independent of ionic strength and type of electrolyte for ALRs 

containing electrolyte solutions.  Finally, salt addition was reported to dampen the sparger 

design influence on gas holdup for a given gas flow rate.   

In an earlier study by Snape et al. [68], various sugar solutions were used to study gas 

holdup and superficial liquid velocity changes as a function of gas flow rate.  For low gas 

flow rates, the effect of sugar concentration on gas holdup was negligible.  At high gas flow 

rates, low sugar concentrations increased gas holdup and higher sugar concentrations lowered 

gas holdup.  The superficial liquid velocity, however, was found to be influenced by sugar 

concentration at low gas flow rates where as the sugar concentration was increased, the 

superficial liquid velocity increased slightly until a local maximum was observed, after 

which the superficial liquid velocity decreased with further increases in the sugar 

concentration. 

2.3.7 Liquid Phase Properties and Mass Transfer 

The addition of surface active agents to pure water systems may enhance or reduce 

overall mass transfer coefficients and complicate gas-liquid mass transfer [69].  Surface 

active agents (surfactants) are believed to accumulate at the gas-liquid interface lowering 
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surface tension, reducing interfacial renewal, and reducing gas diffusion in the liquid [70]. 

This effect causes bubbles to behave like solid particles resulting in much lower transport 

rates [71].  The addition of small amounts of organic additives is believed to retard the 

expansion and compression of the bubble surface reducing the interfacial overall mass 

transfer coefficient.  Organic additives may also prevent bubble coalescence, increase the 

number of bubbles, and in turn increase the overall mass transfer coefficient [69].  In general, 

the mass transfer rate may increase or decrease in the presence of organic additives while it 

always decreases in the presence of antifoam agents [54, 69, 72-74]. 

In an attempt to explain the effect of surfactants on gas-liquid systems, Russo et al. 

[70] reported the following trends:   

(1) For a given contaminant concentration, gas-liquid interfaces with high renewal rates 

have higher overall mass transfer rates.   

(2) For a given flow regime, higher contaminant concentrations result in lower mass 

transfer rates.   

(3) At higher renewal rates, the variation due to different contaminant concentration was 

smaller than the variation at lower renewal rates, indicating that more turbulent flow 

regimes can offset contaminant concentration effects. 

2.3.7.1 Organic Additives and Electrolytes 

Sarding et al. [75] evaluated surfactant effects on mass transfer in a bubble column 

reactor using three surfactants types: cationic, non-ionic, and anionic.  Their results showed 
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that the surfactant type and concentration had a direct affect on mass transfer.  The 

magnitude of the overall mass transfer coefficients obtained from their work is summarized 

as follows: cationic (lowest), non-ionic, anionic, and pure water (highest). 

The addition of sugar to water was shown to drastically reduce the overall mass 

transfer coefficient as the sugar concentration increased [63].  However, in the same study, 

the addition of sodium chloride and 2-propanol to water caused a significant increase in the 

overall mass transfer coefficient.  2-propanol provided more mass transfer enhancement than 

sodium chloride.  The change in mass transfer with respect to 2-propanol concentration was 

small, while increasing the sodium chloride concentration resulted in a larger change in 

overall mass transfer coefficient.  Likewise, Bello et al. [20], in a comparison between pure 

water and a sodium chloride solution, reported that the overall mass transfer coefficient was 

about 10% higher in a 0.15M sodium chloride solution. 

The effect of adding propanol, benzoic acid, isoamyl alcohol, and 

carboxymethylcellulose was evaluated by Muthukumar [69].  At all concentrations, the 

propanol and benzoic acid had the effect of increasing mass transfer, while isoamyl alcohol 

and carboxymethylcellulose reduced mass transfer.  The increase in mass transfer for 

propanol and benzoic acid was thought to be a result of bubble coalescence inhibition 

resulting in a larger interfacial area due to the addition of these additives.  The reduction in 

mass transfer by the addition of isoamyl alcohol was thought to be a result of isoamyl alcohol 

not spreading evenly in the bubble surface causing interfacial blockage.  The observed 

reduction in mass transfer for carboxymethylcellulose was attributed to the increased fluid 
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phase viscosity.  Muthukumar concluded that the behavior of additives was rather complex 

because different trends were observed with different additives. 

2.3.7.2 Antifoam Agents 

Al-Masry [74] showed that the addition of antifoam agents to a pure water reduced 

gas holdup at all concentrations studied (0 to 100 ppm).  The most severe reduction occurred 

at relatively low concentrations, whereas further increases in the antifoam concentration lead 

to gas holdup values approaching pure water values.  It was also noticed that the bubbles 

produced in the presence of antifoam were larger than those found in pure water due to 

enhanced bubble coalescence.  The liquid circulation velocity appeared to be unaffected by 

the addition of antifoam; however, the overall mass transfer coefficient, like gas holdup, was 

severely affected.  For all antifoam concentrations considered, the overall mass transfer 

coefficient was nearly 50% lower than that of pure water. 

In another study, the addition of antifoam agents was shown to have a strong affect on 

mass transfer [54].  As the antifoam concentration was increased from 0 to 10 ppm, the 

overall mass transfer coefficient abruptly dropped to less than half its original value.  Further 

increases in the antifoam agent had little, if any, effect on the overall mass transfer 

coefficient.  Vasconcelos et al. [54] attributed this behavior to the assumption that material 

accumulated at the bubble interface causing the bubble interface to change from mobile to 

rigid.  In separate studies, Kawase and Moo-Young [71] and Al-Masry and Dukkan [73] 
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reported that the addition of antifoaming agents dramatically decreased mass transfer rates, in 

some cases by as much as 50%. 

2.3.7.3 Fibers 

Chisti and Moo-Young [18] evaluated the effect of adding Solka Floc cellulose fiber 

in low concentrations to the liquid phase of an ALR.  As the cellulose concentration varied 

from 0 to 3 wt%, the resulting overall mass transfer coefficient declined dramatically.  

Cellulose addition was also noted to significantly affect how the overall mass transfer 

coefficient responded to changes in the superficial gas velocity. 

2.3.8 Solid Particles 

Hwang and Lu [76] evaluated the effect of adding small solid particles to a gas-liquid 

system.  The addition of 2.4 mm polystyrene particles significantly affected mass transfer 

rates in an internal ALR.  The overall mass transfer coefficient decreased dramatically as the 

solid concentration increased and was attributed to a lower gas holdup and a change in the 

degree of mixing caused by the addition of solid particles.  Similarly, Muthukumar [69] saw 

the same trend in an external ALR when 3.5 mm polystyrene and nylon particles were added 

to a pure water system.  Muthukumar concluded that the decrease in overall mass transfer 

coefficient with increasing solids loading was due to the reduction in interfacial area. 

Gourich et al. [77] considered the effect of adding 750 μm polystyrene particles to a 

gas-liquid system.  They found that the addition of solid particles showed an initial 25% 
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reduction in mass transfer.  Solid loading beyond 5 wt% had a negligible affect on the mass 

transfer rate.  Conversely, they noted that the addition of solid particles had a slight influence 

on gas holdup.  The riser gas holdup initially increased and then decreased slightly as the 

solid loading increased.  Dhaouadi et al. [78] observed that gas holdup in an external ALR 

with 90 μm glass beads was about the same as that of a similar system without glass beads.  

However, the superficial liquid velocity was observed to decrease significantly with the 

addition of the glass beads. 

In a similar study using 12 nm solid particles, Wen et al. [79] discovered that gas 

holdup in the riser decreased with an increase in solid loading.  The authors speculated that 

the gas holdup reduction was due to the solid particles restricting the effective flow area for 

the gas and liquid phases, causing a reduction in the gas residence time.  Likewise, the 

overall mass transfer coefficient decreased as the solid concentration increased, and this 

effect was attributed to the possibility that solid particles increase bubble coalescence. 

Conversely, Kluytmans et al. [80] found that the overall mass transfer coefficient 

increased with the addition of 30 μm carbon particles in a bubble column.  The overall mass 

transfer coefficient for pure water was reported the be nearly the same as when the particles 

were added for gas velocities up to 6 cm/s, at which point the overall mass transfer 

coefficient for pure water began to be noticeably lower.  The authors of this work attributed 

the increase in mass transfer for this system to the possibility that the carbon particles 

increased turbulence.  Kluytmans et al. [81] reported that the addition of carbon particles also 

resulted in an increase in gas holdup much like when electrolytes are added to pure gas-liquid 
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systems.  The results of these works are in direct contrast to what has been reported in airlift 

reactors for mass transfer, indicating that the significant differences may exist depending 

upon the type of solid additive. 

Dhaouadi et al. [78] listed the following mechanisms as possible explanations for the 

variation in hydrodynamics due to the addition of solid particles:   

(1) Solid particles may increase bubble coalescence producing larger bubbles that move 

faster. 

(2) Particulate systems may be more turbulent, generating smaller bubbles with lower 

rise velocities. 

(3) Particles may act to increase fluid viscosity and density, causing an increase in the 

superficial liquid velocity and a decrease in the bubble rise velocity. 

(4) Solid particles in the bubble wake stabilize the bubble flow allowing for faster bubble 

rise velocities and loading to a reduced gas holdup. 

2.3.9 Performance Summary 

Mass transfer data in the literature for ALR varies a great deal and is sometimes 

contradictory.  This is due to the wide range of reactors studied and the techniques used to 

study them.  Merchuk [14]; however, reported that most researchers are in agreement on the 

following points: 

(1) The physical and chemical properties of the liquid phase have a small, but significant 

affect on mass transfer rates in ALRs, especially when compared to BCR. 
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(2) The overall mass transfer rate generally increases with increasing superficial gas 

velocity. 

(3) For a given superficial gas velocity, an increase in superficial liquid velocity 

generally results in a lower mass transfer rate. 

(4) Taller ALRs tend to have a higher mass transfer rate than shorter ones. 

(5) Cocurrent gas flow in the downcomer tends to have a higher mass transfer rate than 

stagnant or no gas flow in the downcomer. 

(6) The aeration efficiency of ALRs remains relatively constant for increasing mass 

transfer rate and superficial gas velocity compared to BCRs and CSTRs, which 

typically show a decrease in aeration efficiency as mass transfer rate and superficial 

gas velocity increase. 

(7) A change from homogeneous to heterogeneous flow in ALRs typically leads to a 

decrease in mass transfer rate. 

As discussed above, factors influencing gas-liquid mass transfer are often related and 

quite complex.  Benyahia et al. [82], Merchuk and Gluz [6], Merchuk et al. [83], Heijen and 

Van’t Riet [19], and Chisti [2] suggested how these factors might be related.  Figure 2.11 is a 

compilation of how the suggested operating and design variables influence transport 

parameters.  Figure 2.11 also illustrates how complex the relationships are for factors 

affecting gas-liquid mass transfer. 
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Figure 2.11: Diagram showing the relationship between design and operating variables 
and their effect on airlift loop reactor performance, compiled from the 
literature [2, 6, 19, 82, 83]. 

Onken and Weiland [10] reported that like gas holdup, mass transfer rates in ALRs 

are lower than those observed in similar BCRs due to the effect of superficial liquid velocity 

on the gas phase residence time.  The addition of compounds which reduced bubble 

coalescence may increase overall mass transfer coefficients by a factor of two when 

compared to pure water; however, the increase in overall mass transfer coefficients was much 

smaller than those observed in BCRs, which were reported to be nearly six-fold for similar 
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conditions.  The lower overall mass transfer coefficients for ALRs were still acceptable 

because ALRs can be operated at much higher gas velocities than BCRs, allowing them to 

operate over a wide range of gas flow rates to achieve much higher overall mass transfer 

coefficients. 

2.4 Dissolved Oxygen Measurement Techniques 

There are several techniques used to determine the dissolved oxygen content of a 

fluid.  In practice, five general methods exist: chemical, volumetric, tubing, optodes, and the 

electrochemical electrode [51, 84].  This section will discuss these methods and some of their 

limitations and uses.  The majority of this section, however, will focus on electrochemical 

electrodes as they are the most common. 

2.4.1 Chemical Method 

In the chemical method, a sample is taken from the reactor and the dissolved oxygen 

concentration is determined off line using a titrimetric method.  The use of chemical methods 

for systems that have rapidly changing dissolved oxygen content is limited because these 

methods are laborious, slow, and prone to error if done incorrectly. 

The most widely used chemical method is the Winkler method (iodometric method) 

developed by Lajos Winkler in 1888 [85].  The Winkler method is considered to be the most 

reliable and precise titrimetric procedure for dissolved oxygen analysis.   
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This method involves several steps which include: First, adding a divalent manganese 

solution followed by a strong alkali to a sample in a gas tight container; this causes the 

dissolved oxygen to oxidize an equivalent amount of manganese ions to hydroxide.  Second, 

an acid is added to convert the hydroxide to iodine.  Third, the solution is titrated with a 

thiosulfate solution in the presence of a starch indicator to determine the number of iodine 

molecules in solution.  The number of measured iodine molecules is proportional to the 

number of dissolved oxygen molecules in the original sample as shown by: 

2 3 21 mole of O 4 moles of Mn(OH) 2 moles of I→ →  (2.23) 

As with any analytical method, the success of the Winkler method is highly 

dependent upon how the sample is collected and prepared.  Care must be taken during all 

steps of the analysis to ensure that oxygen is neither introduced nor lost from the sample.  

Furthermore, care must be taken to ensure that the sample is free of contaminants because 

they may oxidize the iodide or reduce the iodine, problems commonly encountered with 

fermentation broths.  Wilkin et al. [86] stated that the Winkler method is the most accurate 

and precise of all methods for determining dissolved oxygen concentrations, but that it is also 

the most challenging technique to master and the most time consuming. 

Other chemical methods such as the NADH oxidation and phenylhydrazine oxidation 

have been employed to determine dissolved oxygen content [51], but are limited in use. 
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2.4.2 Volumetric Method  

The volumetric method is simple and robust in principle, but rather inaccurate in 

practice.  This method relies on the conversion of dissolved oxygen to carbon dioxide which 

is then driven out of solution.  As the carbon dioxide is driven out of solution, it is collected 

and its volume determined at a known pressure and temperature.  Then using the ideal gas 

law and an elemental balance for the oxygen to carbon dioxide reaction, the oxygen 

concentration is determined.  While simple in theory and nearly unaffected by other 

compounds that might be in the sample, this method, like the chemical method, is slow and 

lacks the sensitivity needed for dynamic biological applications [51]. 

2.4.3 Tubing Method  

The tubing method consists of using a very small diameter thin walled tube of semi-

permeable material that is immersed in a fermentation broth [51, 87].  A slow stream of 

oxygen free carrier gas is pumped through the immersed tube, and allowed to absorb oxygen 

from the fermentation broth by diffusion.  The concentration of oxygen in the exit gas stream 

is then measured using a gas analyzer or electrode.  This method is strongly influenced by the 

tubing type, length, diameter, carrier gas flow rate, wall thickness, temperature, and the 

mixing characteristics within the reactor vessel.  Due to the many factors that may influence 

the operation of this method, extensive calibration is required.  The tubing method has been 

shown to have response times of two to ten minutes [87].  However, despite the long 
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response times and the need for extensive calibration, this method can be very accurate, 

robust, and withstand repeated sterilization cycles. 

2.4.4 Optode Method 

A recent development for the measurement of gaseous and dissolved oxygen has been 

the introduction of the photometric transducer or optode [88].  Many types of optodes exist, 

of these the fluorescence quenching optode is the most widely used for oxygen 

measurements [87].   

Optodes for oxygen sensing are constructed using an immobilized flurophore (a 

special dye) attached directly to the end of an optic fiber.  When excited by a reference light 

wave, the flurophore will emit another light wave having a different wavelength with an 

intensity that depends on the quencher concentration.  Thus when the quencher is oxygen, the 

intensity of the emitted light is proportional to the dissolved oxygen concentration. 

These relatively new sensors show great promise as they can be used in very harsh 

environments, do not consume oxygen, are very small, are very sensitive to oxygen 

concentration changes, and are not prone to time response issues common to other methods 

[87-92].  However, a few drawbacks like ambient light interactions and photo bleaching are 

currently preventing their widespread use. 
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2.4.5 Electrochemical Electrode Method 

In 1950, Leland Clark developed the membrane coated dissolved oxygen electrodes 

that have become one of the most important process instruments for aerobic fermentations.  

Normally, the membrane used with these electrodes is only gas permeable and impermeable 

to most ions such as those used in the electrolyte solution, thus these electrodes do not 

disturb the biological process.  For this reason, and the fact that dissolved oxygen electrodes 

are relatively easy to use, they are very popular and widely used in industry.  Today most all 

oxygen electrodes can be classified as either polarographic or galvanic. 

Both of these electrodes are based on the reduction of oxygen at the cathode, which is 

negatively polarized with respect to the anode.  While these electrodes are similar in 

construction and operation, the main difference between the two is the source of the needed 

polarization voltage.  Polarographic electrodes are typically charged with a negative voltage 

of 0.75 volts by an external source, while galvanic electrodes utilize a negative 0.75 volt 

potential created by the use of dissimilar metals. 

It is important to note that both the polarographic and galvanic electrodes measure the 

oxygen tension of the medium in which they are placed [5].  So when an electrode is placed 

in a liquid, it does not measure dissolved oxygen, but rather the dissolved oxygen partial 

pressure, which is proportional to oxygen tension in the fluid.  It is necessary to know the 

oxygen solubility, pressure, and temperature of the fluid medium in order to determine the 

exact dissolved oxygen concentration. 
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2.4.5.1 Polarographic Electrodes 

Polarographic electrodes usually contain a platinum or gold cathode, a silver/silver 

chloride anode, and a potassium chloride electrolyte.  Figure 2.12a shows a schematic 

representation of a polarographic electrode.  When the anode of the electrode is polarize by 

an external power supply, the following reactions take place at the surface of the electrode 

[51, 87, 93]: 

2 2 2 2

2 2
-

2 2

cathode:    O 2H O e H O 2OH

                 H O 2e 2OH

anode:       Ag Cl AgCl e

overall:     4Ag O 2H O 4Cl 4AgCl 4OH

− −

− −

−

− −

+ + → +

+ →

+ → +

+ + + → +

 (2.24) 
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Figure 2.12: Schematics showing the typically construction of polarographic and 
galvanic electrodes, adopted from Linek [94]. 
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The potassium chloride electrolyte solution between the membrane and probe tip 

provides the chloride ion needed for the above reactions.  Since chloride ions are consumed 

over time with this type of probe, it is necessary to periodically replace the electrolyte 

solution.  Due to the reactions that take place at the electrode surface, a voltage dependant 

current is created that can be related to the oxygen partial pressure as shown in the 

polarogram (current vs. voltage diagram) in Figure 2.13.  The rate at which the current 

producing reaction takes place at the electrode surface in the plateau region shown in Figure 

2.13 is limited by the diffusion rate of dissolved oxygen through the membrane and 

electrolyte, Figure 2.14 [51, 93, 94].  Since these reactions are very quick, the diffusion rate 

is a function of the bulk fluid oxygen concentration.  As shown in Figure 2.13, when the 

correct polarization voltage is selected for a particular electrode, the current output is linear 

with respect to dissolved oxygen concentration.  Care must be taken to ensure that the 

voltage is not too high to prevent the formation of hydrogen peroxide due to water 

electrolysis as this will increase the current generation.  On the other hand, if the voltage is 

too low, the current response will be nonlinear.  Care must also be taken to ensure that the 

reaction at the electrode is sufficiently fast to prevent the built up of hydrogen peroxide that 

may promote hydrogen peroxide diffusion from the electrode tip.  If hydrogen peroxide 

diffuses away, the electrode reaction stoichiometry will be altered.  Likewise, it has been 

shown that the accumulation of OH¯ ions also retards the probe reaction rates [93].  Thus, it 

can be concluded that a careful balance must be achieved to ensure proper electrode 
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operation, however, on a positive note, this balance is relatively easy to achieve and maintain 

in practice. 
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Figure 2.13: Typical polarographic electrode polarogram, adopted from Lee and Tsao 

[95]. 
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Figure 2.14: The typical oxygen transport path encountered at an electrode tip. 

2.4.5.2 Galvanic Probes 

In contrast to the polarographic electrode, a galvanic probe utilizes an anode of zinc, 

lead, or cadmium and a cathode of silver or gold, where a silver cathode and lead anode are 

the most common [93].  Figure 2.12b shows a schematic representation of a typical galvanic 

probe.  The electrochemical reactions that take place at the probe surface are [51, 87, 93]: 
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2 2
2

2 2 2

cathode:    O 2H O 4e 4OH

anode:       Pb Pb 2e
overall:      2Pb O 2H O 2Pb(OH)

− −

+ −

+ + →

→ +
+ + →

 (2.25) 

Like the polarographic probe, the galvanic probe is constrained by the rate limiting 

step of oxygen diffusion across the probe membrane.  Thus, the current output of the probe is 

linearly related to the dissolved oxygen concentration in the bulk fluid. 

2.4.5.3 Electrochemical Electrode Time Constant 

Despite their fundamental differences, both electrochemical electrodes presented 

above operate on the same basic principles, where the electrode behavior can be predicted 

using a simplified electrode model with the following assumptions [95]: 

(1) The cathode is well polished and the membrane is placed over the cathode surface to 

minimize the thickness of the electrolyte layer, allowing the electrolyte layer to be 

neglected in the mathematical model. 

(2) The liquid around the probe is well mixed so that the oxygen partial pressure at the 

membrane surface is the same as in the bulk fluid. 

(3) The electrochemical reaction at the surface of the electrode is much faster than 

oxygen diffusion through the membrane. 

(4) Oxygen diffusion occurs only in one direction, perpendicular to the probe. 

These assumptions lead to the development of the so called one layer model [95, 96].  

A schematic representation of the one layer model is shown in Figure 2.15a where oxygen 

diffusion to the electrode surface is only a function of the membrane layer.  Under steady 
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state conditions for the above simplifications, Fick’s First Law describes oxygen diffusion 

from the bulk fluid to the membrane surface, showing that the electrode current output is 

linearly related to bulk fluid oxygen partial pressure.  However, in application, the above 

over simplifications can rarely be used. 
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(a) One Layer Electrode Model (b) Three Layer Electrode Model  
Figure 2.15: One and three layer electrode models used to estimate electrode time 

constants, adopted from Linek [94]. 

Although the one layer model is an over simplification of actual conditions, its 

application to the case where the oxygen partial pressure is allowed to change with time 

illustrates how electrode properties affect transient dissolved oxygen measurements.  Fick’s 

Second Law is needed to describe the unsteady state diffusion in the membrane, and shows 

that the diffusion coefficient of the membrane directly determines how fast an electrode will 

respond to a step change in the oxygen partial pressure [95-97].  Lee and Tsao [95] showed 

mathematically that the electrode time response, for the one layer model, depends on the 

electrode time constant defined as: 
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where Dm is the membrane diffusion constant and dm is the membrane thickness.  A large τe 

results in a fast probe response, which means that the membrane is either very thin or it has a 

high Dm.  On the other hand, a small τe indicates that the membrane is impermeable to 

oxygen or that the membrane is too thick.  Since electrode stability relies on membrane 

controlled diffusion, a compromise between electrode response and stability is required. 

As stated earlier, the one layer model is an over simplification of actual conditions 

typically observed and hence, a three layer model is typically employed.  This model 

accounts for the effects of the electrolyte and the stagnant boundary layer as shown in Figure 

2.15b [95-97].  While the three layer model is more suited to quantifying the electrode 

response to transient conditions, it only provides the foundation for determining the electrode 

response constant due to the many factors listed in the literature that may affect it.  Electrode 

design aspects like membrane type, membrane thickness, cathode surface area, electrolyte, 

and electrode style all profoundly affect the behavior of the electrode response to oxygen 

partial pressure.  Likewise, bulk fluid properties such as fluid type, viscosity, temperature, 

total pressure, oxygen partial pressure, fluid velocity, and solid loading can also affect 

electrode dynamics.   

2.4.5.4 Electrochemical Electrode Response Time (τe) 

Due to the complexity involved in estimating the probe time constant, most 

investigators opt to measure the electrode response time to a step change in the oxygen 
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partial pressure. Typically, the electrode response time is defined as the time it takes the 

electrode to indicate 63% of the total change in dissolved oxygen concentration [5, 97-99].  

There are several experimental procedures described in the literature for obtaining the τe to 

stepwise concentration changes [93]. 

Procedure 1: The electrode is placed at the output of a three way valve and the interchange 

of fluids having different oxygen concentrations takes place when the valve is turned.   

Procedure 2: The electrode is placed in a tube and the concentration change is produced by 

starting and stopping the flow of liquid saturated with air.  While the flow of liquid is 

stopped, the concentration of oxygen in the liquid near the electrode decreases due to the 

chemical reaction at the electrode.  The decrease in concentration will continue until 

nearly all the oxygen near the electrode is consumed.  When this near steady state 

condition is reached, liquid flow is restarted causing a jump in the oxygen concentration 

near the electrode surface.  This method is limited for use with electrodes that have a 

large cathode, i.e., ones that consume oxygen rapidly. 

Procedure 3: The electrode is transferred between two vessels having liquids of different 

oxygen concentrations that are well mixed and thermostatically controlled. 

Procedure 4: The electrode is transferred from air to a sulfite solution by inclining a vessel 

such that the probe, initially in air, is immersed in the sulfite solution. 

Procedure 5: The electrode is rapidly transferred from a pure nitrogen environment to a 

vessel containing a liquid saturated with air.  The liquid and hydrodynamic conditions in 
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the test vessel should be the same as those in which the electrode will be used after 

calibration. 

Procedure 6: The electrode is placed in a closed vessel containing a liquid saturated with 

oxygen and a stirrer.  The stepwise concentration change is then facilitated by introducing 

a compound that immediately consumes all of the dissolved oxygen. 

Regardless of the procedure used to find τe, care must be taken to ensure that the 

hydrodynamic conditions around the electrode during the time response test closely resemble 

those of the process in which the probe will be used, and that the step change is as rapid as 

possible. 

To achieve reasonably accurate overall mass transfer values, a τe much smaller than 

1/kLa is recommended [4, 98] as problems occur when this is not the case.  Thus, in practice 

there are three conditions of interest [100]. 

(1) τe << 1/kLa:  In this range, the response time of the electrode is much smaller than the 

dynamic oxygen concentration change in the reactor and the electrode is suitable for 

monitoring changes in oxygen concentration with small error. 

(2) τe ≈ 1/kLa:  In this range, the response time is of the same order of magnitude as the 

reactor response time and considerable errors may be encounter when calculating 

overall mass transfer coefficients.  However, since this case is commonly 

encountered, models have been developed that account for this error. 

(3) τe >> 1/kLa:  In this range, the response time is much larger than that of the reactor 

and the use of electrodes to monitor changes in oxygen concentration is not suitable. 
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2.4.5.4.1 Electrochemical Electrode Response Models 

Most oxygen measuring electrodes used in biological processes have response times 

that range from 3 to 100 seconds [4, 100], which may result in the need to correct oxygen 

concentration data depending on the reactor dynamics.  Many models have been developed to 

correct for τe and are discussed in great detail in the literature [2, 4, 93-95, 97-113].  Lee and 

Luk [110] and Sobotka et al. [97] provide a good review of these model corrections.  A 

selection of these models is presented below starting with the simplest and finishing with a 

few of the more popular complex models. 

2.4.5.4.2 Models that Neglect the Electrode Dynamic Response 

Van’t Riet [114] and Gaddis [100] suggest that if τe is less than three seconds, the 

overall mass transfer coefficient can be accurately measured without model correction.  

Hence, assuming ideal mixing and insignificant gas phase concentration changes, the overall 

mass transfer coefficient may be calculated from: 

( )
*

L
L*

o

C C exp k a t
C C

−
= − ⋅

−
 (2.27) 

However, Van’t Riet [114] also cautioned that considerable corrections have to be 

made to coefficients calculated using this method if the gas residence time in the reactor is 

much greater than 1/kLa.  These corrections were reported to greatly reduce the accuracy of 

Equation (2.27).  Linek et al. [106, 115] also reported that the use of this model to relate 

experimental data to overall mass transfer coefficients would lead to an under estimation of 

kLa for air systems in which nitrogen transport is neglected, and that this model is really only 
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sufficient for steady state signals and marginally acceptable in the extreme case when oxygen 

concentration changes are much slower than τe. 

2.4.5.4.3 Models Considering Membrane Diffusion 

The following model has been used when assuming that the electrode response is a 

first order lag function, the liquid and gas phases are perfectly mixed, there is negligible 

nitrogen diffusion, and the interfacial area and oxygen concentration in the gas phase are 

constant [2, 112, 116, 117]: 

eL t /k a t*
L eL

*
L eo

(e k a e )C C
(1 k a )C C

− τ− ⋅ − ⋅ τ ⋅−
=

− ⋅ τ−
 (2.28) 

In general τe represents all the diffusional properties of the measurement system in the 

model [97].  As with the previous model, the adequacy of this model depends on the ratio of 

τe and 1/kLa.  When τe is much less than 1/kLa, Equation (2.28) reduces to Equation (2.27) 

and the resulting error associated with neglecting τe has been reported to be small [41, 100, 

118].  This model is again subject to the same errors and limitations as the previous one, 

especially if nitrogen transport is neglected. 

Linek et al. [93], however, suggested a different approach using a very sophisticated 

model in which the electrode time constant plays a major role.  Rather than solve the model 

explicitly to determine kLa, they suggested that since the electrode signal is most distorted 

during the initial response, one could find kLa by removing the distorted portion of the signal 
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and using the remaining response and Equation (2.27) to find kLa.  The proper application of 

this technique is discussed in detail in the literature [93, 119]. 

If the system being studied can be assumed to have a perfectly mixed liquid phase 

and a constant oxygen concentration in the gas phase, Tobajas and Garcia-Calvo [101] 

suggested that the following model be used to determine kLa: 

*
L

*
e e0

C C 1 m t t1 exp m 1 exp
1 mC C

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞− − ⋅ −
= − − −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− τ τ− ⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

 (2.29) 

where m is defined as 

L ek am
1

⋅ τ
=

− ε
 (2.30) 

and ε is the gas holdup. 

2.4.5.4.4 Models Considering Membrane Diffusion and Time Delay 

Lopez et al. [103] and Vardar [99] suggested that, when the electrode dynamic 

response was first order with a time delay, the following model be used to correct the 

dissolved oxygen concentration data: 

E
L d E e

dC (t)C (t ) C (t)
dt

− τ = + τ  (2.31) 

where CE is the recorded electrode concentration and τd is dead time.  The dead time, τd, 

represents the time from the beginning of the concentration step change to the beginning of 

the change in the electrode signal.  Once the concentration data is corrected for the electrode 

dynamic response, Equation (2.27) was used to determine kLa. 



www.manaraa.com

 73

Sobotka et al. [97], on the other hand, suggested that the following relationship be 

used to find kLa using the electrode data: 

( ) ( )

( ) ( )
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L e L d e do
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L e

L e d
L d e d

k aC C 1 1 exp k a t exp t /
1 k a 1 k a t tC C

k a1                                  1 k a exp t /
1 k a

⎡ ⋅ τ−
= − ⋅ − − τ +⎢− ⋅ τ − ⋅ τ −− ⎣

⎤⎛ ⎞⋅ τ
− ⋅ τ − + − τ ⎥⎜ ⎟

− ⋅ τ τ − τ ⎥⎝ ⎠ ⎦

 (2.32) 

When τd << τe, Equation (2.32) reduces to Equation (2.28), and when τd << τe << 1/kLa, 

Equation (2.32) reduces to Equation (2.27). 

2.4.5.4.5 Models Considering Membrane and Liquid Film Diffusion 

These models are quite complex as they are second order in nature and the solution to 

these models require numerical analysis or a method of moments due to their complexity 

[97].  Linek et al. [93], Ruchti et al. [102], and Dang et al. [120] suggested that while these 

models are more complex and involved, their solutions are much superior to any first order 

model.  However, due to there complexity, they are typically not used and the reader is 

referred to the literature for more information concerning these models. 

2.4.5.4.6 Models Considering a Membrane Diffusion Model 

Sobotka et al. [97] claimed that the empirical time delay models previously described 

do not properly consider the physical nature of the electrode response.  Instead, they insisted 

that models based upon Fick’s Second Law are superior and encouraged their use to more 
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accurately model system dynamics.  In their review, they presented many of the different 

diffusional models that have been developed and discussed their usefulness.    

As has been shown by a review of just a few of the models presented in the literature, 

the use of electrochemical electrodes to accurately determine kLa can be complicated due to 

internal instrument dynamics as well as system dynamics.  Hence, as implied by Tribe et al. 

[98] and others [93, 95, 97, 110, 121], the proper selection of an electrode and method for 

evaluating its signal will greatly impact the accuracy of the experimental results. 

2.5 Dissolved Carbon Monoxide Measurement 

This section will review the bioassay technique employed by Riggs [122], Kapic 

[123], and Ungerman [124] to measure dissolved carbon monoxide concentrations in a 

bioreactor.  Note that, unlike dissolved oxygen measurements where electrodes are available, 

no dissolved carbon monoxide electrodes are currently on the market. 

In the bioassay, a sample is taken from the reactor and the dissolved carbon monoxide 

concentration is determined off line using a protein binding method.  The use of the bioassay 

is limited, much like the chemical methods for determining dissolved oxygen concentrations, 

because this method is laborious, slow, and prone to error if done incorrectly. 

The method involves several steps which include: First, preparing a myoglobin 

protein solution that is free of dissolved oxygen and carbon monoxide.  Second, the 

myoglobin protein solution is added to a sample in a gas tight container; this causes the 

dissolved carbon monoxide to bind to the myoglobin.  Third, the change in the absorbance 



www.manaraa.com

 75

spectrum (400 to 700 nm) of the sample after the protein solution is measured.  The change 

in the absorbance spectrum is proportional to the number of dissolved carbon monoxide 

molecules in the original sample. 

As with any analytical method, the success of the bioassay is highly dependent upon 

how the samples are collected and prepared.  Care must be taken during all of the steps of the 

analysis to ensure that oxygen is not allowed to bind with myoglobin and that all 

measurements are carried out very carefully [122].  Furthermore, care must be taken to 

ensure that small gas bubbles are not entrained in the samples when they are collected as this 

leads to errors [123].  Although difficult to use, the bioassay technique, once mastered, may 

be successfully used to accurately measure dissolved carbon monoxide concentrations.  

2.6 Determining kLa 

For two phase gas-liquid systems, it has been shown that the gas mass transfer rate 

(GTR) can be described by: 

( )*L
L L A

dCGTR k a C C a J
dt

= = − = ⋅  (2.33) 

where C* and CL are the equilibrium gas concentration at the gas-liquid interface and the 

dissolved gas concentration in the liquid phase, respectively. 

In bioreactors, dCL/dt, C*, and CL can all be measured directly.  However, as stated 

earlier, kL and a are not so easily measured, so it is common to report the product of kLa.  

This product is commonly called the overall volumetric mass transfer coefficient and has 

units of s-1. 
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The most widely used methods for determining kLa in bioreactors will be presented 

next [2, 4, 97, 125].  Prior to presenting these methods, it is important to realize that Equation 

(2.33) was derived using the assumptions of having well mixed gas and liquid phases, so that 

kLa can be assumed constant over the entire gas-liquid system.  These assumptions, however, 

are not always applicable to the system being evaluated and further modeling of the gas-

liquid system may be needed. 

2.6.1 Gas Balance Method 

The gas balance method can only be used in a gas consuming system.  Typically, this 

method is applied to a fermentation run where all the variables except kLa are measured.  The 

gas concentration and the entering and exiting gas stream flow rates are monitored using a 

gas analyzer and mass flow rate meters.  Using this information, the GTR can be calculated 

from [4]: 

i i o o

L

F C F CGTR
V

⋅ − ⋅
=  (2.34) 

where F is the respective gas flow rate, C is the respective gas concentration, and VL the 

liquid volume.  Once the GTR is known using Equation (2.33), kLa can be calculated. 

The gas balance method is claimed by Doran [5, 126] to be the most reliable method 

for determining kLa.  However, this method requires the precise measurement of the gas inlet 

and outlet concentrations and flow rates.  Since the difference between inlet and outlet 

conditions is typically very small, the accuracy of this method is determined in large part by 
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the accuracy of the instrumentation [51, 126].  The instrumentation cost for this method is 

often high and usually only justified in situations where expensive gas monitoring equipment 

is also needed for process control.   

This method is also limited by the underlying assumption that the gas phase is 

constant throughout the bioreactor.  For large systems where the gas concentration may vary 

widely from inlet to outlet, gas phase modeling is required to accurately estimate GTR and 

kLa [4]. 

2.6.2 Dynamic Method 

The dynamic method involves measuring the dissolved gas concentration as a 

function of time for a step change in the inlet gas concentration.  Like the gas balance 

method, this method can be applied to an actual fermentation or it can be applied to systems 

containing no microorganisms.  Due to its versatility and ease of use, this method is widely 

used and discussed in the literature [2, 4, 5, 51, 97, 127]. As a result, many variations of this 

method exist of which a select few are discussed in more detail below.   

2.6.2.1 Biological Dynamic Method 

The biological dynamic method is applied to actual fermentations using a step change 

in inlet gas concentration, where the change in dissolved gas concentration in the bulk fluid is 

recorded.  The step change is initiated in one of several ways that will be discussed in more 

detail below.  This method consists of three primary steps.  First, the system is brought to an 
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initial steady state condition.  Second, the inlet gas step change is initiated and the change in 

dissolved gas concentration is recorded.  Typically, the dissolved gas concentration is 

reduced to a point just above the critical gas concentration needed to prevent cell death 

and/or an irreversible change in cell behavior [127].  Third, after a period of time the inlet 

gas concentration is returned to its original state and the change in gas concentration is 

recorded as the system moves back to the original steady state condition.  Figure 2.16 

illustrates the typical dissolved gas concentration profile obtained using the dynamic method. 
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Figure 2.16: Typical dissolved oxygen concentration variation with time for the 

biological dynamic method, adopted from Blanch and Clark [127]. 

The system mass balance for the dynamic method is as follows: 

( )*L
L L

dC k a C C qX
dt

= − −  (2.35) 

where qX is the microbial gas consumption rate.  If the gas phase disengages quickly from 

the liquid, then the transport term disappears in the above relationship and it reduces to: 

LdC qX
dt

= −  (2.36) 
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This equation can be used to find qX assuming the microbial uptake of the gas is 

unaffected by stopping aeration.  kLa is calculated using the overall system mass balance and 

does not require previous knowledge of qX, as qX can be replaced in equation (2.35) with the 

following expression [5]:  

( )*
L LssqX k a C C= −  (2.37) 

where CLss is the dissolved gas concentration at steady state.  Equation (2.35) then reduces to 

the following equation and can be directly solved for kLa: 

( )L
L Lss L

dC k a C C
dt

= −  (2.38) 

The instruments used in obtaining the liquid gas concentration data for this method 

depend on the gas required for the fermentation.  For processes that utilize oxygen, typically 

an oxygen electrode is used, although in rare situations another dissolved oxygen measuring 

technique may be used.  If an oxygen electrode is used, care must be taken to properly 

account for the probe dynamics as discussed earlier in Section 2.4.5 [2, 4].  For processes that 

utilize other gasses such as hydrogen or carbon monoxide, specialized measuring instruments 

or techniques must be employed.  For example, dissolved carbon monoxide concentration 

data can be obtained using the bioassay presented earlier in Section 2.5. 

Blanch [127] reported that the biological dynamic method is commonly used in both 

large and small scale equipment, primarily due to the fact that sterilizable oxygen probes 

permit the finding of kLa during a fermentation without significantly upsetting the system.   
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2.6.2.2 Non-Biological Dynamic Method 

This method is similar to the biological dynamic method in that it employs the use of 

an inlet gas concentration step change, though it differs from the previous method as the 

system either has microorganisms that have been killed, had cell respiration blocked, or does 

not have any microorganisms present [51].  Commonly, this method is used for systems that 

contain no microorganisms at all [30, 97, 114].   

The non-biological dynamic method begins by first removing the dissolved gas being 

studied from the vessel by (i) aerating the system with an inert gas such as nitrogen, (ii) using 

a vacuum to cause the dissolved gas to come out of solution, or (iii) adding a chemical 

compound to consume the dissolved gas.  Once the dissolved gas has been removed, the 

system is then aerated and the change in gas concentration is recorded until steady state is 

reached. 

Without cell respiration, the overall mass balance for the biological dynamic method 

simplifies from Equation (2.35) to Equation (2.33).  kLa is then evaluated by integrating this 

relationship and plotting ln[(C*-CL)/(C*-Co) vs. t, where kLa is the slope of the resulting line 

or by curve fitting the data with a non-linear regression software package. 

This method is reported to offer accurate results if the system being studied does not 

vary significantly from the actual system containing respiring microorganisms [51].  

However, the accuracy of the results obtained using this method were reported to depend on 

the procedure used to initiate the concentration step change and electrode dynamics (if a 

dissolved oxygen electrode is used) [4, 109, 115, 128, 129]. 
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2.6.2.3 Variations of the Inlet Step Change 

While variations for each of the dynamic methods have been reported in the literature, 

the variation of greatest importance seems to be in how to initiate the change in the dissolved 

gas concentration.  The remainder of this section will review the most popular techniques 

used to instigate a step change in the inlet gas concentration. 

2.6.2.4 Gas Off/On or Startup 

The gas off/on technique is used primarily for fermentations that have actively 

respiring cells.  In such fermentation systems, the dynamic method is applied by turning the 

gas flow off and allowing the cells to deplete the dissolved gas until the critical gas 

concentration is reached and then the gas is turned back on (Figure 2.16). 

One of the main advantages of using this technique is that the gas-liquid mass transfer 

is not affected by alternating the gas species, which has been reported to affect the 

calculation of kLa values [130].  Another advantage is the low cost associated with this 

technique as it requires no additional equipment.  However, this method has a couple of 

limitations that must also be realized.  First, this method must be done quite rapidly and with 

extreme care to ensure that cell respiration is not affect by the change in dissolved gas 

concentration.  Second, when the gas is turned off and then on again, the system 

hydrodynamics are altered.  Consideration must also be given to the time needed to once 

again reach steady state hydrodynamic behavior because if the startup time nears or exceeds 

the length of the experiment, then the method can not be used for calculating kLa [125].  For 
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example, in the extreme case when vessels are very large or have a height greater than one 

meter, the time to reestablish steady state gas holdup conditions may be larger than the 

characteristic kLa, resulting in inaccurate kLa estimates that are not representative of normal 

operation [4]. 

2.6.2.5 Gassing Out or Gassing In 

Since dynamic methods are usually quite sensitive to the starting conditions of the 

experiment, a gas switching technique is used to eliminate hydrodynamic changes.  The 

gassing out technique is one of the most widely used techniques for the dynamic method 

when a simulated fermentation broth is used.  This technique, as the name implies, begins by 

aerating with one gas and then switching at t = 0 to a second gas.  For example, in an air-

water system, the system may first be aerated with air until the water is completely saturated, 

and then aerated with nitrogen to replace the oxygen in solution (Figure 2.17).  A wide 

variety of gas pairs have been used in the application of this technique in the literature, 

though air-nitrogen is the most common gas pair. 
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Figure 2.17: Typical dissolved oxygen concentration variation with time for the non-

biological dynamic method, adapted from Blanch and Clark [127]. 

Van’t Riet [4] reported that when deoxygenation with nitrogen was followed by an 

aeration switch, the average gas phase residence time (τg) must be considered as the gas 

phase concentration was no longer constant over the entire test.  Van’t Riet defined τg as: 

v
g

G

H
U 1

ε⎛ ⎞τ = ⎜ ⎟− ε⎝ ⎠
 (2.39) 

where Hv is the unaerated liquid height in the vessel, UG is the superficial gas velocity, and ε 

is the gas holdup.  If τg is the same order of magnitude as 1/kLa, then the assumption of a 

constant gas phase concentration used to derive Equation (2.35) is no longer valid [97].  

Models to correct for this behavior have been proposed by Dunn and Einsele [131] and Dang 

et al. [120].  These models have been reported to be only useful over a narrow range of 

conditions [4].  Linek et al. [130] reported that interphase nitrogen transport may 

significantly influence kLa estimations.  Linek et al. [128] indicated that errors in kLa 

estimation due to nitrogen transport can be as high as 25% for large kLa.  However, they also 

indicated that for low kLa values commonly encountered, the error due to nitrogen transport 
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may be negligible.  Stenberg and Andersson [132] found that the change from nitrogen to air 

had a small, but significant, affect on kLa measurement, but this error was smaller than other 

observed experimental errors. 

Lopez et al. [103] and Chang et al. [113] suggested that a gas pair of air and oxygen-

enriched air be used to improve this technique by eliminating the need for pure nitrogen.  

Lopez et al. showed that kLa values measured with this technique closely matched those 

obtained for the gas off/on technique.  Kim and Chang [111] indicated that the difference in 

inlet oxygen concentrations for this technique must be at least 20% in order to minimize 

errors. 

2.6.2.6 Pressure Step 

Another widely used form of the dynamic method is the pressure step technique 

where the gas concentration is changed by suddenly increasing or decreasing the system 

pressure.  The system pressure is typically changed by a small amount, for example from 15 

to 20 kPa, by the addition of gas into the reactor head space.  The sudden pressure change is 

believed to instantaneously change the gas concentration in the gas phase throughout the 

vessel independently of system hydrodynamics. 

The use of the pressure step technique was found by Blazej et al. [116] and Linek et 

al. [106] to be more accurate (by up to 60% for systems with noncoalescing liquids) in 

determining kLa values than the more popular gassing out technique.  This increase in 

accuracy was attributed to model short comings related to the washing out of one gas by 
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another for systems with noncoalescing liquids.  The kLa values for the gassing out and 

pressure step methods where found to be similar under some operating conditions.  Linek et 

al. [109, 133] also reported that there was no difference in kLa values when gassing with air 

or pure oxygen, indicating that nitrogen transport was not a factor.  They also reported that 

experimental results for this technique only match those from the gas off/on method for small 

values of kLa. 

2.6.2.7 Non-Ideal Pressure Step 

The non-ideal pressure step technique is slightly different from the pressure step 

technique.  The difference in the two is that in the pressure step technique, the pressure 

change is considered instantaneous or ideal.  In the non-ideal pressure step technique, 

however, the pressure step is actually achieved by throttling the exit gas stream to cause a 

pressure buildup, where the time lag for the pressure step depends on the gas flow rate and 

the vessel size.  Linek et al. [128] compared this technique to the pressure step technique and 

reported that results from the two techniques agreed very well. 

2.6.2.8 Concentration Step 

The concentration step technique is a rarely used technique that deoxygenates the 

liquid phase by the addition of a small amount of a chemical compound like sulfite without 

interrupting aeration.  This technique should not be confused with the chemical sorption 

methods as only a small amount of the compound is added with the intent of causing a 
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dissolved gas concentration step change.  For this method to work properly, the system must 

be well mixed to ensure uniform dissolved gas concentrations.  Also, care must be taken to 

ensure that the chemical compound being added does not alter the hydrodynamics or enhance 

mass transfer rates. 

2.6.2.9 Dynamic Method Drawbacks 

The dynamic methods are significantly affected by several factors: 

(1) These methods assume that both the gas and liquid phases are well mixed.  However, 

if either one of these phases is anything other than well mixed, which is often the 

case, especially for large or tall vessels, kLa accuracy decreases [127]. 

(2) Since air is commonly used for experimental purposes, the effect of simultaneous 

oxygen and nitrogen transport may affect the accuracy of experimentally determined 

kLa values [125, 128, 130, 132]. 

(3) Changing from one steady state to another, where the gas phase residence times are 

significant, will cause the kLa estimate to be inaccurate.  This is especially true when 

the time to move from steady state conditions is of the same magnitude as 1/kLa [114, 

125]. 

(4) The rapid change in dissolved oxygen concentrations with time may lead to oxygen 

electrode outputs that are not directly related to the instantaneous oxygen 

concentration unless the output is conditioned to adjust for electrode dynamics [114].  

Tribe et al. [98] showed that neglecting electrode probe response time, while using 
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any of the dynamic measurement methods, would cause errors in kLa estimates, 

regardless of how much smaller τe is compared to 1/kLa.  They indicated that proper 

accounting for the electrode dynamics is needed for reliable measurements. 

A comparison of methods done by Poughon et al. [126] concluded, without 

explanation, that the use of the dynamic method always results in an under prediction of kLa 

when compared to other methods, such as the gas balance and chemical sorption methods. 

2.6.3 Chemical Sorption Methods 

These methods are based on a chemical reaction between the absorbed gas and a 

chemical that is added to the liquid phase.  Four of these methods will be presented here, 

although many others exist.  The sulfite oxidation, hydrazine, and peroxide methods are 

applicable to systems studying oxygen transport, while the carbon dioxide absorption 

method, like its name implies, is for measuring dissolved carbon dioxide. 

2.6.3.1 Sulfite Oxidation Method 

The sulfite oxidation method is based on the oxidation of sulfite to sulfate in the 

presence of a catalyst, where dissolved oxygen is consumed by the reaction: 

catalyst1
2 3 2 2 42Na SO O Na SO+ ⎯⎯⎯→  (2.40) 

Thus, to make this method work, the bulk fluid has to have a high concentration of 

sulfite and catalyst prior to aeration.  Once aeration begins, any oxygen that dissolves into the 

fluid phase is immediately consumed by the sulfite reaction and the rate of sulfite oxidation 
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is proportional to kLa.  Since the bulk fluid oxygen concentration remains at zero, kLa is 

given by: 

*sulfite
L

dC k a C
dt

− ≈ ⋅  (2.41) 

The sulfite concentration in the bulk fluid is followed by taking liquid samples over a 

given time interval.  The samples are then quenched with excess iodine and back titrated with 

thiosulfate to determine the residual iodine concentration and, subsequently, the sample 

sulfite concentration [97].  Then knowing the sulfite concentration change with time, 

Equation (2.41) can be used to determine kLa. 

Chisti [2] and Blanch [127] reported that this technique had severe limitations.  First, 

there is a need for expensive high purity chemicals.  Second, the chemical reaction produces 

a highly ionic fluid that is non-coalescing.  Third, sample analysis is often slow and tedious 

[97].  Fourth, the sulfite oxidation rate is very sensitive to fluid properties and impurities, 

thus the reaction rate depends on the type of catalyst used, its concentration, trace metals, 

temperature, and fluid pH.  Hence, kLa determination requires that the reaction conditions be 

carefully controlled, the sulfite concentration kept sufficiently high, and excess of catalyst 

must be present in the bulk fluid to ensure that oxidation occurs in the bulk fluid and not at 

the gas-liquid interface [2].  Gogate and Pandit [125] indicated that this method is not 

suitable for use in systems using pure oxygen because bubble size in the system changes 

dramatically by the high chemical reaction rate.  Van’t Riet [114] also reported that the 

reaction rate constant can vary in unknown ways and that this method should be avoided. 
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2.6.3.2 The Hydrazine Method 

The steady state hydrazine (N2H4) method makes use of the following reaction [2]: 

2 4 2 2 2N H O N H O+ → +  (2.42) 

This method uses a steady flow of hydrazine into an aerated reactor.  The dissolved 

oxygen concentration is then followed by an oxygen electrode.  The intent of this method is 

to introduce hydrazine into the system at a rate equal to kLa which, when accomplished, 

keeps the electrode signal at a constant level.  The rate at which hydrazine is consumed is 

equal to kLa. 

The reaction in Equation (2.42) does not form ionic species, therefore the system 

hydrodynamics are not affected during the course of the test, unlike the sulfite oxidation 

method. [2]. 

2.6.3.3 Peroxide Method 

The peroxide method is based on the following chemical reaction where oxygen is 

produced in the reactor liquid: 

catalase
2 2 2 22H O 2H O O⎯⎯⎯⎯→ +  (2.43) 

The oxygen is transferred to a carrier gas that is used to transport the oxygen out of 

the system.  Under steady state conditions, the oxygen production is equal to the oxygen 

transfer rate.  To calculate the oxygen transfer rate, only the peroxide inlet flow rate and 

concentration, liquid volume, carrier gas flow rate, and dissolved oxygen concentrations are 

needed at steady state conditions.  This method uses catalase enzymes that are known to 
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enhance foam formation and alter the gas bubble diameter which is a severe limitation when 

considering the use of the method [125]. 

2.6.3.4 Carbon Dioxide Absorption Method 

Another commonly employed chemical technique is the absorption of carbon dioxide 

into a mild alkaline or an appropriately buffered solution [134].  The carbon dioxide method 

is similar in principle and procedure to the sulfite oxidation method.  Chisti [2] indicated that 

the limitations for this method where similar to those of the sulfite oxidation method. 

2.7 Summary 

Hydrodynamics of EALRs have been extensively studied in the last three decades.  

This has led to improvements in EALR design and created a knowledge base useful in 

understanding how design and operating parameters may influence EALR operation (e.g., 

Figure 2.11).  However, there remains a need to further understand these relationships 

because each EALR has unique characteristics that affect gas-liquid mass transfer and system 

hydrodynamics.  Additionally, a significant effort has been put into understanding how to 

accurately measure oxygen gas-liquid mass transfer rates.  While much has been suggested 

on this subject, most of which is contradictory, past work provides useful information about 

the pros and cons of the most common methods used to determine oxygen gas-liquid mass 

transfer that can be used in developing an appropriate measurement technique for any given 

situation.  Furthermore, it was found that very little work has been completed to develop 
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techniques for measuring gas-liquid mass transfer rates for gas species other than oxygen.  

The goal of this work is to build upon the existing knowledge base and to further develop the 

understanding of EALR transport theory needed to promote the future use of EALRs in 

bioprocessing applications. 
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CHAPTER 3: EQUIPMENT AND EXPERIMENTAL METHODS  

This chapter describes the experimental equipment and methods used in this research.  

It is divided into nine sections: external airlift loop reactor setup, visual flow observations, 

gas holdup measurement, superficial liquid velocity measurement, dynamic gassing method, 

dissolved oxygen measurement, dissolved carbon monoxide measurement, kLa 

determination, and measurement uncertainty. 

3.1 External Airlift Loop Reactor Setup 

The bioreactor used in this research (Figure 3.1) is a custom made external airlift loop 

reactor (EALR).  A schematic representation of this reactor is shown in Figure 3.2.  The 

EALR consists of two main parts, a 2.4 m cast acrylic riser with a 10.2 cm ID, and a 2.4 m 

cast acrylic downcomer with a 2.5 cm ID, giving the EALR an aspect ratio (AR) of 1:16.  

The downcomer and riser sections are connected with two 13.3 cm cast acrylic tubes with 

2.5 cm ID located at H = 5 and H = 127 cm, where H is the height above the aerator plate.  

The location of the top connector tube fixes the EALRs effective reactor height at 

He = 127 cm (12.5 column diameters). 



www.manaraa.com

 93

 
Figure 3.1: External airlift loop reactor used in this study. 
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Figure 3.2: Schematic representation of the external airlift loop reactor showing the 
key components. 

A gas plenum is located beneath the aerator plate and filled with large glass beads 

(i.e., marbles) to promote uniform gas distribution through the aerator plate into the riser.  

The top of the riser and downcomer sections are joined together with a ball valve as they 

enter the reactor vent; this allows for the possibility of gas flow out of the downcomer.  A 

gate valve is installed in the middle of the downcomer section so that when closed, the EALR 

approximates a semi-batch BCR. 

The EALR is fitted with 14 sample ports of which eight are in the riser and six are in 

the downcomer.  The sample ports in the riser are located at H = 10.2 and 110.5 cm with 4 

ports at each height, one each on the front, back and side of the EALR with the last port 
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located between the front and side port (Figure 3.3).  The front ports are 2.5 cm in diameter 

and used for dissolved carbon monoxide samples.  The side and back ports are 1.1 cm in 

diameter and are used for measuring temperature and pressure.  The ports located between 

the front and side ports are 0.1 cm in diameter and used for measuring the dissolved oxygen 

partial pressure.  The sample ports on the downcomer are located at H = 5.0, 67.2, 97.8, 108, 

and 127.0 cm with 2 ports at 67.2 cm.  These ports are 1.1 cm in diameter and are used for 

measuring conductivity (H = 98.7 and 67.2 cm), pressure (H = 5.0 and 67.2 cm), and 

injecting salt tracers (H = 108 cm).  The EALR is also fitted with three other ports, one on 

the bottom of the downcomer and two on the bottom of the riser that are used for filling and 

draining the EALR with water and for introducing aeration gas.  

 
Figure 3.3: Close up view of the external loop airlift reactor riser showing the layout of 

the sample ports on the riser. 

The EALR is aerated with compressed gas from one of several sources depending on 

the test.  Compressed air is supplied by the Iowa State University physical plant.  Prior to 
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use, the air is filtered to remove moisture, oil, and debris.  Ninety-nine percent pure 

compressed nitrogen and carbon monoxide are purchased in 255 cubic feet cylinders from 

the Iowa State University Chemistry Stores and connected to the gas delivery system using 

the appropriate gas cylinder regulators.  The compressed gas lines are connected to the 

EALR gas plenum via a pressure regulator, two gas mass flow meters, and a needle valve 

(Figure 3.4).  The pressure regulator is used to maintain a constant working pressure of 

~22 psi across the mass flow meters.  The first gas mass flow meter is an Aalborg model 

GFM37S meter with a flow range of 0 to 30 L/min and the second is an Aalborg model 

GFM471S meter with a flow range of 0 to 100 L/min.  These meters are connected to the 

pressure regulator and needle valve with ball valves such that the small and large meters can 

be used to measure low (0 to 30 L/min) and high (30 to 100 L/min) inlet gas velocities, 

respectively.  The needle valve is used to adjust the inlet volumetric gas flow rate from 0 to 

100 L/min, which corresponds to a superficial gas velocity range of 0 to 20 cm/sec. 



www.manaraa.com

 97

 

 
Figure 3.4: Experimental instrumentation panel. 

3.1.1 Data Acquisition System 

The data acquisition system is composed of a personal computer, a National 

Instruments 6030E E series multifunction data acquisition card, National Instruments SCB-

68 shielded connector block, National Instruments LabView 7.0 data acquisition software, 

several 24 VDC power supplies, a temperature amplifier, and various other electrical 

components.   
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The data acquisition system is used to monitor and record EALR parameters such as 

temperature, riser pressures, conductivity, volumetric gas flow rates, and dissolved oxygen 

partial pressure.  The system is also used to control the salt tracer injector and to provide test 

timing.  At the heart of the data acquisition system are several software programs written 

with LabView 7.0.  These programs are used to automate the data collection process to 

reduce test taking time and to improve data repeatability. 

3.1.2 Working Fluid/Water Quality 

Water is the primary working fluid used in the reactor.  The water used in this work 

includes unconditioned tap water, deionized tap water, and treated deionized tap water.  The 

unconditioned tap water is used in the initial tests to observe visual fluid flow patterns and 

reactor hydrodynamics.  The deionized and treated deionized tap is used to study gas-liquid 

mass transfer and reactor hydrodynamics, and is maintained at 20 °C.  The pure deionized 

water is studied to eliminate ionic compounds that were shown in Sections 2.3.6 and 2.3.7 to 

significantly affect gas-liquid mass transfer rates and hydrodynamics.  The treated deionized 

water is then studied to understand how mass transfer and hydrodynamics are affected by 

inorganic compounds and surfactants.  The deionized water treatments include (i) adding 

5.11 gm of potassium chloride (KCl) per liter of water to create a 0.07 M KCl solution, (ii) 

adding 1.34 gm dibasic sodium phosphate (Na2HPO4), 0.77 gm monobasic potassium 

phosphate (KH2PO4), 0.5 gm sodium bicarbonate (NaHCO3), and 2.5 gm ammonium sulfate 

([NH4]2SO4) per liter water to create a 0.04 M nitrosomonas solution (typical inorganic 
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fermentation media), and (iii) adding an unknown surfactant species and concentration. 

(Note: the addition of the surfactant was unknown at the time of testing and therefore little is 

known about the surfactant concentration or composition; however, the results for tests using 

this media justify their inclusion.) 

The reactor is filled to a liquid height of 142.2 cm (14 column diameters) for all tests 

preformed as part of this work.  

3.1.3 Aerator Plates 

Gas is injected at the riser base through the gas plenum using one of three 11.4 cm 

circular stainless steel aerator plates having open area ratios A = 0.62, 0.92, 2.22% (Figure 

3.5).  Each plate has 1 mm diameter holes that are uniformly distributed over the entire plate 

area, where the change in open area is accomplished by changing the number of uniformly 

distributed holes (Table 3.1). 

 
Figure 3.5: Aerator plates used in the external airlift loop reactor. 
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Table 3.1: The aerator plate open area ratios and corresponding 1 mm orifice count 
used in the external airlift loop reactor. 

Open Area Ratio Orifice Diameter Number of Orifices
Plate #1 0.62% 1 mm 62
Plate #2 0.92% 1 mm 95
Plate #3 2.22% 1 mm 224  

3.1.4 Superficial Gas Velocity 

The EALR is operated using a superficial gas velocity (UG) that ranges between 0.5 to 

20 cm/s.  Table 3.2 shows which UG were used in the different experiments performed as part 

of this work. 

Table 3.2: The superficial gas velocities used this work. 

UG   
(cm/s)

Visual 
Observations Hydrodynamic Hydrodynamic

Oxygen      
Mass Tranfer

Carbon 
Monoxide   

Mass Transfer
Oxygen       

Mass Tranfer

Carbon 
Monoxide   

Mass Transfer
0.5 X X X X X X
1.0 X X
1.5 X X
2.0 X X X X X X X
2.5 X X
3.0 X X
3.5 X X
4.0 X X X X X X
4.5 X X
5.0 X X
6.0 X X X X X X X
7.0 X X
8.0 X X X X X X
9.0 X X
10.0 X X X X X
11.0 X X
12.0 X X X X X X
13.0 X X
14.0 X X X X X
15.0 X X
16.0 X X X X X X
17.0 X X
18.0 X X X X
19.0 X X
20.0 X X X X X X

a   
b   

The treated water in these tests includes the 0.07 M KCl and 0.04 M Nitrosomonas solutions. 
The water in this test is the deionized water containing a surfactant.

Tap Water Deionized and Treated Watera Treated Waterb 
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3.1.5 Reactor Modes of Operation 

The EALR is operated in one of three operational modes (open vent mode, closed 

vent mode, and bubble column mode) set by closing and opening the gate valve in the 

downcomer and the ball valve in the reactor vent (Figure 3.1 and Figure 3.2).  The open vent 

mode (OV mode) is set by opening the gate valve in the downcomer and the ball valve in the 

reactor vent (Figure 3.6a) allowing the aeration gas to exit the reactor via both the riser and 

downcomer vents.  The closed vent mode (CV mode) is set by opening the downcomer gate 

valve and closing the ball valve in the reactor vent (Figure 3.6b) only allowing the aeration 

gas to exit the reactor through the riser vent.  The bubble column mode (BC mode) is 

achieved by closing both the gate valve in the downcomer and the ball valve in the reactor 

vent (Figure 3.6c) allowing the aeration gas to exit only through the riser vent and further 

restricting the system hydrodynamics by removing the fixed fluid circulation path through 

the downcomer. 
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Figure 3.6: Schematic representation of the external airlift loop reactor illustrating the 

three possible operational modes; open vent mode, closed vent mode, and 
bubble column mode. 

3.2 Visual Flow Observations 

Changes in operation mode and inlet superficial gas velocity alter the observable flow 

patterns in the EALR.  The changes in observed flow patterns are quantified using high speed 

digital photography. 
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3.2.1 Visual Flow Observation – Experimental Setup 

A Nikon digital SLR camera (D50) equipped with a Tamron zoom lens (AF18-

200mm F/3.5-6.3 XR Di II) is used to capture still images of the fluid flow patterns.  The 

camera is placed ~60 cm in front of the upper or lower tube connector.  Attached to the 

camera is a remote flash unit (Minolta 132PX) that is synced with the camera shutter.  The 

flash is used to provide back lighting for the picture using a light diffuser made from vellum 

and acrylic.  The diffuser is placed directly behind the upper or lower tube connecter and the 

remote flash is located at the upper edge of the diffuser.  Additional fore lighting is provided 

by a 250 watt halogen work light placed ~90 cm below the camera.  In order to freeze the 

moving gas bubbles in the EALR, the camera is set to operate at its quickest shutter speed 

(Tv = 1/4000 sec) with the f-stop set nearly wide open (Av = 20). 

3.2.2 Visual Flow Observation – Method 

To collect the desired pictures to document the liquid flow behavior in the upper and 

lower tube connector, the flowing method is used.  With the camera and equipment setup and 

ready to go, the EALR is filled with water to H = 142.2 cm.  The aeration gas is turned on 

and set to the desired inlet superficial gas velocity.  Flow conditions in the EALR are allowed 

to reach steady state by letting the EALR operate for two minutes, and then three pictures are 

taken at 30 second intervals.  This procedure is then repeated for the next operating 

condition. 
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Photographs documenting the fluid flow behavior in the upper and lower tube 

connectors are taken for all three modes of operation and for inlet superficial gas velocities as 

shown in Table 3.2 for a total 432 photographs.  The water used for this test is unconditioned 

tap water.  

3.3 Gas Holdup Measurement 

Gas holdup in the riser and downcomer are two of three hydrodynamic parameters 

tracked during this research.  Gas holdup is related to the pressure drop in the reactor by 

assuming that the acceleration effects are negligible [2].  Thus the total pressure drop in the 

reactor corresponds to the hydrostatic head. 

3.3.1 Riser Gas Holdup (εr) 

Gas holdup in the riser section (εr) is measured between the upper and lower ports on 

the riser (H = 10.2 and 110.5 cm) using one of two methods.  For the tap water tests, two 

pressure transducers are used to measure the local pressure head at the upper and lower ports 

(Dwyer Instruments, Inc. models 673-2 and 673-3).  These transducers provide a 4 to 20 mA 

output signal that is proportional to hydrostatic head (cm H2O) when excited by a 24 VDC 

power supply.  The output signal of the transducers is followed by the data acquisition 

system. 

Average riser pressures are computed from measurements taken over a two second 

interval at a sampling frequency of 1000 Hz.  For each operating condition 100 average riser 



www.manaraa.com

 105

pressures are collected and stored to a data file.  Following each experimental test the 

pressure data is used to calculate the overall average riser pressure difference (ΔP).  εr is then 

calculated using the following relationship derived in Appendix A: 

r
o

P1
P
Δ

ε = −
Δ

  (3.1) 

where ΔPo is the liquid hydrostatic head when UG = 0 cm/s. 

 For all other tests, a single differential pressure transducer (Cole-Parmer model U-

68071-54) is used to measure the differential pressure between the lower and upper ports on 

the riser.  This transducer likewise provides a 4 to 20 mA output signal that is proportional to 

the differential hydrostatic head when excited by a 24 VDC power supply.  The output of the 

transducer is followed by the data acquisition system.   

The average riser differential pressure is computed from measurements taken over a 

0.1 second interval at a sampling frequency of 1000 Hz.  For each operating condition at least 

1200 average riser differential pressures are collected and stored to a data file.  Following 

each experimental test the differential pressure data is used to calculate the overall average 

riser differential pressure difference (dPr).  εr is then calculated using the following 

relationship derived in Appendix A: 

r
r

r

dP
h

ε =
Δ

 (3.2) 

where Δhr is the distance between the riser ports used by the differential pressure transducer. 
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3.3.2 Downcomer Gas Holdup (εd)  

Gas holdup in the downcomer section (εd) is measured using one of two methods.  

For the tap water tests an inclined U-tube manometer is used while for all other tests a 

differential pressure transducer identical to the one on the riser is used to determine 

downcomer gas holdup.   

The inclined U-tube manometer is connected to the downcomer at H = 5.0 and 

67.2 cm or at H = 5.0 and 97.8 cm for CV and OV mode, respectively.  The change in height 

of the water columns in the manometer is recorded by hand.  For each operating condition 

the number of collected samples varied depending on UG and the mode of operation as shown 

in Table 3.3 (due to the magnitude of the water column vibration in the manometers).  At the 

conclusion of each test, the average height change (Δhm) is calculated and used to determine 

εd using the following relationship: 

L m
d

L G d

h
h

ρ Δ
ε =

ρ −ρ Δ
 (3.3) 

where ρL is the liquid density, ρG is the gas density, and Δhd is the distance between the 

downcomer ports used by the manometer. 

Table 3.3 Number of samples taken to determine downcomer gas holdup. 

Operation Mode UG (cm/s) # Samples
Open Vent Mode 0.5 - 2.0 5
Open Vent Mode 2.5 - 9.0 10
Open Vent Mode 10 - 20 20
Closed Vent Mode 0.5 - 20 10
Bubble Column Mode N/A N/A  
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The downcomer differential pressure transducer is connected in place of the inclined 

U-tube manometer and connected to the downcomer at H = 5.0 and 67.2 cm.  Data collection 

and processing to determine the downcomer gas holdup using the differential pressure 

transducer uses the same method outlined in Section 3.3.1 for riser gas holdup where Δhr in 

Equation (3.2) is replaced with Δhd. 

3.4 Superficial Liquid Velocity Measurement 

The superficial liquid velocity (UL) is the remaining hydrodynamic parameter tracked 

in this research.  Since UL can not be directly measured, it is determined from a knowledge of 

the linear liquid velocity (VL) and gas holdup.  Like gas holdup, UL and VL have both riser 

and downcomer components, yet the riser superficial liquid velocity (ULr) is the parameter of 

greatest interest and the one commonly reported in the literature. 

The determination of riser and downcomer UL is often accomplished using a tracer 

technique or specially calibrated flow meters and mathematical relationships to convert the 

measurable VL to UL (see Section 3.4.4).  The tracer techniques commonly used to determine 

VL are based on determining the time it takes for a given tracer to travel a set distance.  For 

this work, a potassium chloride salt tracer was selected and conductivity electrodes are used 

to measure the time it takes an injection of the salt solution to travel past two fixed locations 

[2, 4, 37, 48, 135, 136]. 
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3.4.1 Test Equipment 

To employ the tracer method in this research, the following equipment is used: (i) a 

salt solution injector, (ii) two conductivity electrodes, (iii) a function generator, and (iv) the 

data acquisition system. 

The salt solution injector shown in Figure 3.7 consists of two 10 mL syringes, an air 

solenoid, four one-way valves, and a salt solution reservoir (not shown).  The injector is 

powered by an air cylinder with a 1.3 cm maximum stoke that is capable of instantaneously 

injecting the salt solution into the EALR.  The air cylinder is activated by an air solenoid 

valve controlled via the data acquisition system.  The syringes in the injector serve two 

functions.  One of the syringes is used to deliver ~2 mL of the salt solution to the injection 

port on the EALR and the other syringe is used to remove an equivalent volume of liquid 

from the riser of the EALR.  The action of these two syringes is simultaneous and prevents 

any change in the overall liquid volume in the EALR during velocity measurement. 

 
Figure 3.7: Salt solution injector used to measure the linear velocity in the downcomer. 
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The conductivity electrodes (Figure 3.8) are supplied by Microelectrodes, Inc.  These 

electrodes are custom built to have similar response properties and dimensions compatible 

with the EALR.  The conductivity electrodes both have a 0.6 cm outside diameter and equal 

electrode constants (K = 1.0).  The output of the electrodes is proportional to the ability of 

the ions in the liquid to conduct an electric current.  Therefore, an increase in the 

concentration of conducting ions will result in an increase in the electrode output signal.  A 

BK Precision function generator (model 4011A 5Mz function generator) provides the AC 

current needed to power the electrodes (a 5 kHz square wave).  The output signal of the 

electrodes is followed by the data acquisition system. 

 
Figure 3.8: Microelectrode, Inc. miniature conductivity electrodes. 

3.4.2 Test Reagents 

The salt solution used as the chemical tracer in this method is a 0.34 M potassium 

chloride solution.  The salt used in this test is a 99.9% pure potassium chloride obtained from 

Fisher Scientific.  The salt solution is prepared by adding 100 g potassium chloride to four 
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liters of deionized water.  The salt and water are mixed and stored in the salt solution 

reservoir. 

3.4.3 Linear Velocity Measurement 

The experimental method to determine the average linear liquid velocity in the 

downcomer (VLd) is as follows.  Before an experiment is initiated, the salt solution reservoir 

is filled.  The EALR is filled to H = 142.2 cm.  The gas is turned on and the gas flow rate is 

set to the desired operating point and run for approximately two minutes to ensure steady 

state conditions.  Once steady flow is achieved, data collection is initiated.  Data is collected 

by first injecting two milliliters of the salt solution into the downcomer at the injector port 

and simultaneously withdrawing two milliliters of liquid at the base of the riser using the 

injector.  Second, the concentration response at each of the conductivity electrodes is then 

followed for 10 seconds using the data acquisition system set to sample the electrode outputs 

at 50 kHz (Figure 3.9).  Third, the time interval between the conductivity peaks (tp) is 

determined using LabView 7.0 (National Instruments data acquisition software).  To obtain 

tp, the steady state and peak conductivities are estimated for both electrode responses using 

signal processing functions built into LabView.  The steady state and peak conductivities are 

then used to identify a 10% of steady state conductivity threshold for each electrode 

response.  tp is then found as the time between the points where the rising electrode responses 

cross the conductivity thresholds (Figure 3.9).  The sampling frequency used to follow the 

electrode signal allows tp to be resolved with an accuracy of ±0.0001 seconds.  Using the 
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measured tp and the known distance between the conductivity electrodes (de), VLd is 

determined by: 

e
Ld

p

dV
t

=  (3.4) 

 
Figure 3.9: Typical conductivity electrode responses used to find the linear velocity. 

The use of two identical conductivity electrodes eliminates the need to consider the 

response time of the electrodes [2, 137].  The data collection steps are repeated 50 times.  At 

the completion of the 50 injections, the EALR is drained, rinsed, and refilled with fresh 

water.  The data collection process is repeated three times for each gas velocity of interest 

using a randomly generated testing sequence. 
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3.4.4 Superficial Liquid Velocity Calculations 

The superficial liquid velocity in the downcomer (ULd) and riser (ULr) are calculated 

from the following analytical relationships [2]: 

LdLd dU (1 )V= − ε  (3.5) 

Lr LdU AR U= ⋅  (3.6) 

where V̄Ld is the average of 50 VLd data points taken for the gas velocity of interest and εd is 

the corresponding downcomer gas holdup. 

3.5 Dynamic Gassing Out Method 

In order to determine gas-liquid mass transfer rates, there has to be a change in the 

steady state gas concentration, which in turn causes the dissolved gas concentration to 

change.  The change in dissolved gas concentration then is used to determine mass transfer 

rates.  To accomplish a step change in the EALR gas concentration, one of the many methods 

presented earlier in the literature review may be used.  This work uses the dynamic gassing 

out method to provide the needed gas concentration step change.  Two variations of this 

method are used depending on the gas species being studied. 

3.5.1 Basic Dynamic Gassing Out Method 

The basic dynamic gassing out method utilizes two gas species, air and pure nitrogen 

(realizing that air is technically a mixture of several gas species).  The application of this 

method involves using one or more repetitions of the following five step cycle.   
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(1) The system is brought to a steady state operating condition where air is used as the 

sparging gas species.   

(2) Once the air steady state condition has been obtained and maintained for several 

minutes, the sparging gas is switched to nitrogen and the system is allowed to 

progress to a nitrogen steady state condition.   

(3) The system is allowed to reach the new steady state condition and is kept at this state 

for a several minutes.   

(4) Next the sparging gas is changed back to air and the system allowed to return to its 

initial steady state condition.   

(5) After steady state is once again achieved, it is maintained for several minutes.   

Figure 3.10 shows the dissolved gas concentration in the liquid phase and denotes the 

basic dynamic gassing out method. 
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Figure 3.10: Generic dissolved oxygen concentration as a function of time for the basic 

and the extended gassing out methods. 

3.5.2 Expanded Dynamic Gassing Out Method 

The extended dynamic gassing out method is similar to the basic dynamic gassing out 

method with the addition of another gas species, pure carbon monoxide.  The application of 

this method involves adding four steps to the end of the five step cycle used in the basic 

dynamic gassing method.  First, the basic dynamic gassing out method is completed as 

described above using air and nitrogen.  After the 2nd air steady state has been maintained for 

a short length of time, the sparging gas is switched to pure carbon monoxide and the system 

is allowed to shift to a new steady state condition.  This steady state condition is maintained 

for several minutes, and then the sparging gas is once again switched back to air.  The system 
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is now allowed to shift back to the air steady state condition where it is once again held for 

several minutes.  Figure 3.10 also depicts the dissolved gas concentration in the liquid phase 

for the expanded dynamic gassing out method. 

3.5.3 Dynamic Gassing Out Method – Step Time 

The length of time associated with each of the steps in the two dynamic gassing out 

methods varies with the inlet superficial gas velocity and is experimentally determined to 

ensure that steady state conditions are achieved.  Typically, 10 minutes is required to reach 

steady state for UG = 0.5 cm/s while only 1.5 minutes is needed when UG = 20 cm/s.   

3.6 Dissolved Oxygen Measurement 

The dynamic gassing out method is employed to measure the dissolved oxygen as a 

function of time.  A review of this method may be found in Section 2.6.2. 

3.6.1 Experimental Equipment 

Dissolved oxygen concentrations are measured using a Diamond General 

Development Corp. 730 mini Clark-style oxygen electrode (Figure 3.11).  The mini oxygen 

electrode measures 3.2 cm long by 3.2 mm in diameter.  The cathode is an exposed section of 

0.1 mm pure platinum wire in a fused glass seal and the anode is the silver electrode body 

coated with a chloride layer.  The electrode has a polyethylene membrane that is sealed with 

an o-ring over a drop of electrolyte solution on the electrode tip.  The oxygen electrode is 

connected to a Cole Parmer benchtop dissolved oxygen meter (model 01971-00) that supplies 
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the polarization voltage and measures the electrode output current.  The electrode current, 

which is proportional to the dissolved oxygen partial pressure, is converted to a percent of 

saturation by the meter and output as a 4 to 20 mA signal.  The oxygen meter output is 

followed with the data acquisition system. 

 
Figure 3.11: Diamond General Development Corp. dissolved oxygen electrode. 

3.6.2 Electrode Preparation 

The oxygen electrode output current depends on the electrolyte layer thickness, 

electrolyte purity, the electrode tip condition, the polarizing voltage, the oxygen permeability 

of the membrane, and the oxygen partial pressure in the bulk fluid.  As all but the last one of 

these factors is related to electrode physical condition, the condition and setup of the oxygen 

electrode is of great importance. 
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3.6.2.1 Electrode Electrolyte 

The electrolyte solution used with this oxygen electrode is a ~50% saturated 

potassium chloride solution.  The electrolyte solution is prepared using 100 mL of deionized 

water and 15 g of pure potassium chloride.  Since purity is more critical than concentration, a 

new electrolyte solution is prepared on a weekly basis and stored in an air tight container. 

3.6.2.2 Electrode Maintenance 

Electrode maintenance of some sort is performed on a daily basis, using the 

equipment shown in Figure 3.12.  The type of maintenance performed depends on a visual 

inspection of the electrode and the behavior of the output signal.  Each day the electrode tip 

is inspected to ensure that the electrode tip is a dull gray/brown color which indicates that the 

chloride layer is still intact.  If the electrode tip is another color, typically white, the electrode 

must be cleaned and reconditioned, see Section 2.4.5 for more details.  Usually the tip color 

is the proper color and only requires reconditioning about every two weeks depending on the 

amount of use.  The electrode is also visually inspected to see if the membrane has any 

visible tears or if air bubbles exist within the electrolyte solution.  If a tear or air bubble 

exists, the membrane and electrolyte are replaced.  Also, if the output of the electrode for a 

known steady state condition is noticed to be inconsistent with expected results, or if the 

signal is observed to drift significantly over a short time period, the electrode membrane and 

electrolyte are replaced. 
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Figure 3.12: Electrode chlorider, o-ring applicator, membranes, and o-rings used to 

maintain the oxygen electrode. 

Assuming that the chloride layer is intact, the electrode is prepared for service using 

the following steps.  First, the electrode is disconnected from the meter and the existing o-

ring and membrane removed.  Second, the electrode is cleaned using deionized water, 

inspected, and dried.  Third, the tip of the electrode is dipped into the electrolyte solution and 

a drop of solution is allowed to form on the tip.  Fourth, using the o-ring installation tool, a 

new membrane is placed over the drop of electrolyte solution and sealed in place with an o-

ring (Figure 3.13).  Fifth, the newly installed membrane and electrolyte are checked for tears 

and air bubbles, if either are present, this procedure must be repeated.  Finally, the electrode 
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is reconnected to the meter and allowed to polarize.  Once the output signal has stabilized, 

indicating that the electrode is properly polarized, it is ready for use. 

Oxygen 
ElectrodeMembraneO-ring

O-ring 
Applicator

 
Figure 3.13: Installing a new membrane with the o-ring applicator. 

3.6.2.3 Electrode Meter Setup 

The Cole Parmer oxygen meter (Figure 3.14) provides the negative 0.75 V polarizing 

voltage necessary to use the oxygen electrode.  The meter is also used to measure and scale 

the electrode output current.  The output signal of the electrode is scaled using a two point 

method where meter readings of 0 and 6.0 ppm are set to represent steady state conditions for 

liquid saturated with nitrogen and air, respectively.  The data acquisition system is then used 

to normalize the meter output so that the recorded data represents oxygen concentrations 

ranging from 0 to 100 percent. 

 
Figure 3.14: Cole Parmer oxygen meter. 
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3.6.2.4 Electrode Reconditioning 

Reconditioning of the electrode tip is periodically needed to restore the chloride layer 

on the anode of the electrode.  The electrode is reconditioned using the Diamond General 

Development Corp. 3004 chlorider/maintenance kit (Figure 3.12).  First, the electrode is 

unplugged from the oxygen meter.  Second, the o-ring and membrane are removed from the 

electrode and the electrode is cleaned with ammonia to remove the remaining chloride layer 

and other impurities until the electrode tip is a shiny silver color.  Occasionally, a Scotch-

Brite pad is used to remove stubborn spots.  Third, the electrode tip is inspected to ensure 

that the face of the electrode is flat.  If the tip is not flat, emery polishing paper is used to 

flatten the tip.  Fourth, the electrode is cleaned with deionized water.  Fifth, using the 3004 

chlorider with a four molar potassium chloride solution, a new chloride layer is applied to the 

tip as shown in Figure 3.15. 
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Figure 3.15: Schematic showing how the chloride layer is applied to the oxygen 

electrode. 

3.6.2.5 Electrode Time Constant 

The time constant of this electrode depends on the time required to establish the 

various oxygen gradients in the electrolyte.  This depends primarily on the permeability of 

the membrane, the mobility of oxygen in the bulk fluid, and the electrolyte layer.  To 

increase the electrode response time, a thin membrane with a high oxygen diffusion constant 

is needed; however, under these conditions stirring artifacts will be exaggerated.  Therefore, 

it is preferable to use a 0.025 mm thick polyethylene membrane as this is a reasonable 

compromise between signal strength, time constant, and stirring artifacts, as well as being 

readily available in the form of sandwich bags.  The thickness of the electrolyte behind the 

membrane is important to the electrode response time and is affected by two factors: (i) the 

flatness of the electrode surface near the cathode and (ii) proper membrane installation to 
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ensure that there are no creases in the membrane, no air bubble under the membrane, and 

minimal membrane stretching.  The membrane manufacturer indicated that if these 

considerations are observed, the electrode time constant should be about four seconds. 

Experimental determination of the electrode time constant is completed at the 

beginning and end of each day and recorded for later use in determining mass transfer 

coefficients.  The water used to find the time constant is the same as the water used in the 

mass transfer tests.  The water is put into two clean containers that are both well stirred and 

sparged with air or nitrogen (Figure 3.16).  The water in each of the containers is sparged for 

several minutes prior to use to ensure that steady state gas concentrations exist in each.  With 

steady state established, the oxygen electrode is placed in the first container, the one sparged 

with nitrogen, until the electrode output has stabilized at a zero percent oxygen 

concentration.  The electrode is then rapidly moved to the other container, the one sparged 

with air, and the electrode response with time recorded.  Once the electrode output stabilizes 

at 100% oxygen, it is rapidly moved back to the previous container and the electrode 

response recorded again.  This procedure is repeated three times.  Using the collected data, 

the electrode time constant is then calculated as the time it takes the output signal to move 

from 0 to 63 or 100 to 37 percent oxygen concentration depending on if the electrode is 

moved from a container being sparging with nitrogen to one sparged with air or vise versa. 
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Figure 3.16: Apparatus used to determine the electrode time constant. 

3.6.3 Gas Flow Rates 

Prior to the use of either one of the dynamic gassing methods, the pressure regulators 

for each sparging gas are adjusted to ensure that volumetric flow rates for each gas are 

identical.  First, the air flow rate is set by adjusting the pressure regulator to ~22 psi and the 

needle valve (Figure 3.4) to the desired flow rate.  Next, using the gas selector valves, the gas 

species is changed to nitrogen (Figure 3.4).  The nitrogen flow rate is set to match the air 

flow rate by adjusting the pressure regulator on the nitrogen cylinder.  Next the carbon 

monoxide flow rate is set following the same procedure used for the nitrogen.  Once the 

follow rates are set all the gases are turned off. 
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3.6.4 Dissolved Oxygen Concentration Measurement 

Determining the dissolved oxygen concentration as a function of time for various 

operating conditions is initiated by filling the EALR to a height of H = 142.2 cm with water 

that has been conditioned as outlined in Section 3.1.2, and setting the inlet gas flow rate to 

the desired setting as specified in Section 3.1.4.  Then, using either the basic or the expanded 

dynamic gassing out method and the oxygen electrode, the dissolved oxygen concentration 

change with time is recorded.  The data acquisition system used to collect the data is set to 

gather oxygen concentration data at a rate of one kilohertz and to calculate the average 

oxygen concentration every tenth of a second.  Measurements are taken three times for each 

condition listed in Table 3.2. 

3.7 Dissolved Carbon Monoxide Measurement 

This section describes the technique for measuring pure dissolved carbon monoxide 

in water to calculate kLa values.  Like the dissolved oxygen measurements, carbon monoxide 

concentration changes in the liquid phase are initiated by filling the EALR to a height of 

H = 142.2 cm with preconditioned water using the expanded dynamic gassing out method.  

However, a dissolved carbon monoxide electrode, like a dissolved oxygen electrode, does not 

exist.  Therefore, dissolved carbon monoxide concentrations are determined using a bioassay 

that is performed with liquid samples withdrawn from the EALR. 
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3.7.1 Safety 

Since carbon monoxide is odorless and lethal in high doses, extreme care is taken to 

prevent carbon monoxide poisoning.  The compressed carbon monoxide gas cylinders are 

stored in a special cabinet that is vented to outside of the building.  The vent of the EALR is 

also connected to the same exhaust system to prevent carbon monoxide buildup in the lab.  

The lab space is also equipped with two Nigthhawk (model KN-COPP-3) and one Crowson 

Gasmater (TXgard-IS+) carbon monoxide sensors that have alarms set to go off if a leak is 

detected.  In addition, the EALR and piping are periodically checked with a hand held sensor 

to ensure that there are no gas leaks. 

3.7.2 Equipment and Reagents 

Dissolved carbon monoxide concentration measurements are made using an Ocean 

Optics ChemUSB2-VIS-NIR spectrophotometer (Figure 3.17).  The spectrophotometer 

measures light absorption in the 350 to 1000 nm wavelength range and has an optical 

resolution of approximately one nanometer. 
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Figure 3.17: Ocean Optics USB2000 spectrophotometer. 

Samples are prepared and scanned in 1.5 mL polystyrene disposable cuvettes (Figure 

3.18) that have a 10 mm path length.  These cuvettes are usable for wavelengths ranging 

from 340 to 800 nm.  The cuvettes also have polystyrene caps to reduce contamination. 
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Figure 3.18: Syringes and cuvette used in the bioassay. 

Syringes used for liquid sample collection are gastight high performance 10 mL 

syringes (Figure 3.18) from Hamilton (model 1701).  The needles are cemented into this type 

of syringe. 

Several other syringes (Figure 3.18) are used for bioassay solution preparation.  The 

test solution is prepared in a 50 mL glass syringe from Popper & Sons, Inc (model micro-

mate 5059).  This syringe is capped with a rubber septum from Sigma-Aldrich (model 

Z100722) to limit solution contamination.  A gastight high performance 250 mL syringe 

from Hamilton (model 1725) is used to meter the protein solution.  Test samples are prepared 
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using a Drummond Scientific Company 1 mL fixed volume microdispenser (model 3-000-

390).  This microdispenser has a replaceable bore and plunger and is fitted with a disposable 

23 gauge needle. 

Myoglobin used in the dissolved carbon monoxide concentration measurements is 

purchased from Sigma-Aldrich (product number M1882) and derived from horse heart.  The 

myoglobin comes as an essentially salt free lyophilized powder at least 90% pure that must 

be stored at minus 20 degrees Celsius. 

The buffer solution used to dilute the protein solution is prepared from common lab 

chemicals obtained from Iowa State University Chemistry Stores.  Since these chemical are 

common and easy to obtain, their specifics are not presented. 

3.7.3 Liquid Samples Collection  

Before collecting the liquid samples, 19 ten microliter syringes are numbered from 0 

to 15 and SS1 to SS3 and cleaned with deionized water.  The syringes are all inserted into the 

upper carbon monoxide sampling port as shown in Figure 3.19.  Syringe tip location is set by 

making sure that the bottom of the syringe barrel is flush with the outer edge of the sampling 

port.  This allows for a consistent sampling location.  Prior to introducing carbon monoxide 

into the EALR, a single sample is taken with syringe #0 to measure the carbon monoxide 

concentration at time, t = 0.  Transient samples are then withdrawn every five or ten seconds, 

depending on the operating conditions, after carbon monoxide is introduced into the EALR.  



www.manaraa.com

 129

Three additional samples are taken after the system has reached steady state prior to 

switching the sparging gas from carbon monoxide to air. 

 
Figure 3.19: Sample syringes inserted in the external airlift loop reactor for liquid 

sample collection. 

3.7.4 Reagent Preparation 

The bioassay used to determine the dissolved carbon monoxide concentration uses 

three solutions.  The procedure for preparing these three solutions will be presented in the 

next three sections. 

3.7.4.1 Buffer Solution Preparation 

The buffer solution used to prepare all of the other solutions is a 0.1 M potassium 

phosphate pH 7.0 buffer.  This solution is prepared by adding 3.3 g of dibasic potassium 

phosphate powder and 11.0 g of monobasic potassium phosphate powder to 1 L of deionized 
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water.  The pH of the solution is adjusted with either potassium hydroxide or o-phosphoric 

acid to set the pH at 7.0. 

3.7.4.2 Myoglobin Solution Preparation 

The myoglobin solution is prepared from the myoglobin powder purchased from 

Sigma-Aldrich.  One gram of myoglobin powder is dissolved in approximately 25 mL of the 

buffer solution.  To increase the shelf life of the myoglobin solution, the solution is run 

through a dialysis separation process for 24 hours and then spun down in a centrifuge to 

remove impurities.  The solution is separated into 1 mL containers and frozen until needed. 

3.7.4.3 Identifying the Concentrated Myoglobin Solution Concentration 

Prior to testing, the myoglobin solution is thawed and the myoglobin concentration 

determined to aid in preparing the test solution.  The goal in preparing the test solution is to 

obtain a peak absorption value near Abs = 1.5 for the saturated oxygen sample (Figure 3.20).  

This peak occurs at 409 nm for myoglobin. 
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Figure 3.20: Reference absorbance spectrums. 

The concentration is determined by putting 1 mL the buffer solution into a cuvette 

and adding 1 μL of protein.  The absorbance is measured and more protein is added in 1 μL 

increments until the peak absorbance is near 1.5 (Figure 3.20).  Once the peak absorbance 

reaches Abs ≈ 1.5, the myoglobin concentration (Cp) and the dilution ratio (DR) are 

determined from: 

p
m

AbsC =
λ ⋅ε

 (3.7) 

microliters of myoglobin solutionDR
milliliters of buffer solution

=  (3.8) 

where Abs is the absorption value, λ is the path length of the cuvette, and εm is the extinction 

coefficient.  For horse heart myoglobin, εm is reported to be 188 μM-1cm-1 [138]. 
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3.7.4.4 Test Solution Preparation 

The test solution used to analyze the liquid samples is prepared just prior to use as the 

myoglobin solution is temperature sensitive and its exposure to room temperatures must be 

minimized.  The test solution is prepared by pipetting 1 mL of buffer solution for every 

sample being analyzed into the 50 mL syringe.  A typical test uses 20 mL of buffer solution.  

Then, using the previously calculated dilution ratio, an appropriate amount of myoglobin 

solution is added to the test solution using the 250 μL syringe.  The mixture is gently mixed 

and a 1 mL is set aside to determine the “oxy” spectrum, see Section 3.7.5.  Finally, a small 

amount of sodium dithionite (Na2SO4) is added to neutralize all the dissolved oxygen and the 

oxygen bonded to the myoglobin. 

3.7.5 Bioassay – Measuring Absorbance Spectrums 

All measurements are carried out in 1 mL of test solution in the 1.5 mL cuvettes.  The 

sample set aside during test solution preparation is placed in the spectrophotometer and 

scanned.  The measured spectrum is recorded and saved as the “oxy” spectrum.  Likewise, 

the “deoxy” spectrum is determined by scanning a cuvette containing only test solution, this 

spectrum corresponds to a sample containing no carbon monoxide.  In a similar fashion, the 

“saturated CO” spectrum is found by saturating the solution in a cuvette with an excess 

amount of carbon monoxide to ensure that all the myoglobin is bound to a carbon monoxide 

molecule.  The resulting spectrum corresponds to the maximum amount of dissolved carbon 
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monoxide that can be detected without increasing the protein concentration in the test 

solution. 

The liquid samples are analyzed after the three reference spectrums have been 

determined.  After the test solution has been placed in the cuvette, a 10 μL liquid sample is 

injected into the cuvette and the cuvette capped.  The cuvette is gently mixed by inverting the 

cuvette several times and then scanned.  This process is repeated for each of the acquired 

liquid samples.  The resulting spectra will follow the trend shown in Figure 3.21, where an 

increase in the amount of dissolved carbon monoxide results in the peaks of the spectra 

initially shifting down and to the left and then up and to the left.  Errors may occur in these 

measurements because of gas bubbles becoming entrained in the liquid sample when it is 

drawn; thus, care must be taken to ensure that the syringes are clean and properly located in 

the sample port. 
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Figure 3.21: Absorbance spectra progression from carbon monoxide free state to a 

carbon monoxide saturated state. 
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3.7.6 Bioassay – Spectral Fitting 

Quantification of the spectra is achieved by loading the spectra data files into JMP 6.0 

to fit the liquid sample spectra between the “deoxy” and “saturated” spectra.  The software 

package uses a least squares fitting routine that outputs a percent similarity to each of the 

reference spectra.  This output data is then used to determine the carbon monoxide 

concentration (CCO) with time as a percent of the steady state concentration using the 

following relationship: 

( )( ) T
CO p

S

VolC C SS
Vol

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (3.9) 

where Cp is the myoglobin concentration in the test solution, SS is the percentage of the 

steady state concentration exported from JMP 6.0, VolT is the total liquid volume in the 

cuvette, and VolS is the dissolve carbon monoxide liquid sample volume. 

3.8 Volumetric Mass Transfer Coefficient (kLa) Determination 

In order to determine kLa using the concentration versus time data, several 

assumptions are made about the system dynamics, the gas and liquid concentrations, and the 

electrode dynamics.  The simplest model assumes: 

(1) the reactor is modeled as a batch reactor (no liquid flow into or out of the EALR), 

(2) the liquid phase is well mixed, 

(3) the liquid phase gas concentration change is first order, 

(4) the gas phase mole concentrations are constant (no startup effects), and 

(5) the electrode dynamics are negligible (τe << 1/kLa). 
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These assumptions allow for the use of the following model as discussed Section 

2.4.5.4.2: 

( ) ( )* *
o LC(t) C C C exp k a t= − − − ⋅  (3.10) 

where C(t) is the gas concentration as a function of time, C* is the equilibrium gas 

concentration in the liquid, and Co is the initial dissolved gas concentration in the liquid.  

However, the application of this model is usually limited by the fifth assumption, as electrode 

dynamics are not always negligible.  Thus, the following model is typically used [2, 112, 

116, 117] which accounts for electrode dynamics across a wider range of operating 

conditions: 

( ) ( )
( )

eL t /k a t
L e* *

o
L e

exp k a exp
C(t) C C C

1 k a

− τ− ⋅ − ⋅ τ ⋅
= − −

− ⋅ τ
 (3.11) 

where τe is the electrode time constant. 

When τe is much smaller than 1/kLa, τe in Equation (3.11) goes to zero resulting in 

Equation (3.10) and the electrode dynamics may be neglected, as is the case in Figure 3.22 

where τe and 1/kLa equal 2.3 and 120.5 seconds, respectively.  As illustrated in Figure 3.22, 

both Equations (3.10) and (3.11) fit the experimental data very well.  If the difference 

between τe and 1/kLa becomes small, then τe can no longer be neglected as shown in Figure 

3.23.  In this case τe has approached the same order of magnitude as 1/kLa, causing Equation 

(3.10), which neglects τe, to under predict kLa and to not fit the experimental data any more 

(Figure 3.23).  Equation (3.11), on the other hand, when fit to the experimental data still 

provides an adequate fit.  Likewise, if the difference between τe and 1/kLa continues to 
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decrease as shown in Figure 3.24, the under estimation of kLa and the error in predicting the 

experimental data using Equation (3.10) increases.  Similarly, the use of Equation (3.11) to 

estimate kLa for conditions represented in Figure 3.24, where τe and 1/kLa are the same order 

of magnitude, begins to show signs that Equation (3.11) is initially under estimating the 

dissolved oxygen concentration and then slightly overestimating the dissolved oxygen 

concentration, indicating that Equation (3.11) has a limited ability to correctly account for 

electrode dynamics.  Since the data in Figure 3.24 represents conditions in the EALR having 

the highest observed kLa, it is felt that Equation (3.11) adequately accounts for electrode 

dynamics for the range of conditions expected in this work; therefore, it will be used to 

estimate the oxygen gas-liquid mass transfer rates from the collected dissolved oxygen 

concentration data.  The dissolved carbon monoxide concentration data, on the other hand, 

does not need to be adjusted for electrode dynamics so Equation (3.10) will be used to 

calculate carbon monoxide kLa.  It is worth noting that if oxygen kLa are much higher than 

those reported in this work, then either another method of accounting for electrode dynamics 

or an electrode with a faster time constant would be required. 
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Figure 3.22: An illustration of how Equations (3.10) and (3.11) fit the experimental data 

when τe << 1/kLa. 
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Figure 3.23: An illustration of how Equations (3.10) and (3.11) fit the experimental data 

when the difference between τe and1/kLa is about one order of magnitude. 
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Figure 3.24: An illustration of how Equations (3.10) and (3.11) fit the experimental data 

when the difference between τe and1/kLa is less than one order of 
magnitude. 

A statistical software package, JMP 6.0 (SAS Institute Inc.), equipped with a 

nonlinear fitting routine is used to determine kLa using the carbon monoxide and oxygen 

concentration data and Equations (3.10) and (3.11), respectively.  The resulting kLa values 

found using this fitting software are best fit values where initial values for Co and C* are not 

specified.  Figure 3.25 and Figure 3.26 illustrate the results of the fitting equations (3.10) and 

(3.11) to the experimental data for carbon monoxide and oxygen, respectively.  (Note that Co 

is less than zero for the carbon monoxide test as the carbon monoxide data is not normalized 

to account for the reactor response lag time. 
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Figure 3.25: Typical dissolved carbon monoxide data and the corresponding kLa value 

found using a nonlinear fitting routine to Equation (3.10). 
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Figure 3.26: Typical dissolved oxygen data and the corresponding kLa value found 

using a nonlinear fitting routine to Equation (3.11). 
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3.9 Measurement Uncertainty 

Measurement uncertainties are estimated following the methods provided by Figliola 

and Beasley [139].  The typical uncertainties associated with UG and Vd are ±1 to 5% and ±1 

to 8%, respectively, with the larger uncertainties corresponding to the lowest velocity 

measurements.  The absolute gas holdup uncertainty is estimated to approximately ±0.001 to 

0.015.  The uncertainty associated with riser superficial liquid velocity is estimated to be 

about ±1.5 to 3.1%.  The uncertainty associated with the gas-liquid mass transfer coefficients 

is more ambiguous than the other measures due to measurement uncertainties and 

uncertainties introduced when using JMP to statistically determine kLa values for the 

collected data.  Thus, it is estimated that the oxygen kLa values have uncertainty of ±3 to 

10%, where the lowest uncertainties are associated with lower kLa values.  The uncertainty 

associated with the carbon monoxide kLa values is estimated to be ±5 to 10% depending on 

the operating conditions. 

3.10 Summary 

The equipment and methods described in this chapter were used to evaluate the 

EALR hydrodynamic and gas-liquid mass transfer characteristics, the results of which are in 

the next chapter. 
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CHAPTER 4: RESULTS  

This chapter presents and discusses the experimental results collected as part of this 

work, and is divided into four sections: visual observations, gas holdup, liquid velocity, and 

gas-liquid mass transfer results.  Note: The lines connecting data points in the figures 

presented in this chapter are to aid in data presentation and do not represent trends unless 

otherwise noted. 

4.1 Visual Observations 

This section discusses the visual flow observations completed with the methods 

outlined in Section 3.2.  This presentation is divided into two subsections and presents only a 

sampling of the data to illustrate the observed trends.  A complete presentation of the 

photographs acquired for the visual observations is included in Appendix B.  Some of the 

photographs presented in this section are accompanied with hand generated sketches to assist 

in illustrating the observations being made.   

The flow conditions in the EALR are observed for OV and CV modes using an 

aerator plate open area ratio of A = 0.62% as the superficial gas velocity is increased from 

0 to 20 cm/s using the UG listed for this experiment in Table 3.2.  The working fluid for these 

tests is unconditioned tap water.   

4.1.1 Upper Connector Region Visual Observations  

The fluid flow pattern in the EALR is very simple for the OV mode at UG = 0.5 cm/s, 

Figure 4.1.  The gas bubble distribution in the riser appears to indicate that at this condition 
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the EALR is operating in the homogeneous flow regime.  Also, at this condition a small 

amount of gas is seen to enter the upper connector and exit the reactor through the top of the 

downcomer.  The remainder of the downcomer is gas free at this operating condition. 

 
Figure 4.1: External airlift loop reactor flow behavior at the upper connector for open 

vent mode and UG = 0.5 cm/s. 

As the superficial gas velocity is increased from UG = 0.5 to 3.5 cm/s, the conditions 

in the reactor resemble those shown in Figure 4.1 with the exception that the bubble density 

in the riser increases and gas holdup in the downcomer is no longer absent, Figure 4.2.  The 

liquid momentum in the reactor increases as UG increases and is responsible for carrying gas 

bubbles down into the downcomer. 
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Figure 4.2: External airlift loop reactor flow behavior at the upper connector for open 

vent mode and UG = 3.5 cm/s. 

At UG ≈ 3.5 cm/s, as shown in Figure 4.2, a stationary gas bubble begins to form at 

the point where the downcomer and upper connector meet.  The formation of this stationary 

gas bubble occurs because of the increase in liquid momentum causing the fluid to separate 

from the downcomer wall as it travels around the elbow. 

When UG is further increased from 3.5 ~< UG ~< 10.0 cm/s, the diameter and length of 

the stationary gas bubble is observed to grow, the apparent bubble density in the riser 

increases, and the flow regime is noted to progress from the homogeneous regime through 

the transition regime to the heterogeneous regime; these observations are shown in Figure 

4.3.  Also in this range, the gas pulled into the downcomer is separated from the liquid phase 

as it moves around the stationary gas bubble and then is re-entrained into the liquid phase in 

the entrainment region just below the gas bubble (see Figure 4.3 and Figure 4.4). 
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Figure 4.3: External airlift loop reactor flow behavior at the upper connector for open 

vent mode and UG = 10.0 cm/s. 

 
Figure 4.4: External airlift loop reactor flow behavior at the upper connector for open 

vent mode and UG = 20.0 cm/s. 
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As UG is further increased to 20 cm/s, the mean length and diameter of the stationary 

gas bubble appears to be independent of UG.  Although, the mean length of the stationary gas 

bubble does not noticeably change, the length is observed to rapidly oscillate around the 

mean.  The cause of this rapid oscillation in size is thought to be due in part to the rate of gas 

entrainment below the stationary gas bubble and the periodic escape of gas up the 

downcomer. 

As shown in Figure 4.5, when the EALR is operated in the CV mode, a large gas 

pocket forms in the upper connector as soon as gas is sparged into the reactor at 

UG = 0.5 cm/s, the lowest UG considered.  This gas pocket is relatively small at 

UG = 0.5 cm/s, but grows very quickly to its maximum size with only a slight increase in UG.  

Once the maximum gas pocket size is obtained, no sustainable size change is observed over 

the remaining UG range.  A stationary gas bubble also forms just below the upper connector 

in the downcomer (Figure 4.5); however, unlike the OV mode, the stationary gas bubble 

forms at UG = 0.5 cm/s.  As UG increases, the stationary gas bubble diameter grows until it is 

nearly equal to the inside diameter of the downcomer. Once the stationary gas bubble growth 

ceases, the bubble length increases as UG increases to UG ≈ 7.0 cm/s, Figure 4.6.  For 

UG ~> 7.0 cm/s the bubble length appears to be independent of UG; this is revealed by 

comparing the bubble lengths in Figure 4.6 (UG = 7.0 cm/s) and Figure 4.7 (UG = 20.0 cm/s), 

which are very similar. 
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Figure 4.5: External airlift loop reactor flow behavior at the upper connector for closed 

vent mode and UG = 0.5 cm/s. 

 
Figure 4.6: External airlift loop reactor flow behavior at the upper connector for closed 

vent mode and UG = 7.0 cm/s. 
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Figure 4.7: External airlift loop reactor flow behavior at the upper connector for closed 

vent mode and UG = 20.0 cm/s. 

Visual observations also indicate that the liquid below the gas pocket is free of 

entrained gas as it enters the downcomer over the entire UG range, indicating that gas 

separation occurs as the gas-liquid mixture moves through the horizontal connector, similar 

trends have been reported by others [21, 28]. In the entrainment region below the gas bubble, 

surface aeration is noted, and is observed to increase as UG increases. The surface aeration at 

this location causes some of the gas in the gas bubble to be entrained into the liquid; 

however, the degree of gas entrainment is small. Most of the small bubbles entrained at this 

point stay close to the entrainment region while some very small bubbles (estimated to be 

< 0.5 mm in diameter) are found throughout the downcomer. At UG ~< 3.5 cm/s, very few, if 

any gas bubbles are present in the downcomer. When UG ~> 3.5 cm/s, the number and size of 



www.manaraa.com

 148

small bubbles in the downcomer does increase; although, the average gas holdup in the 

downcomer is not measurable using pressure measurements for the UG studied. 

4.1.2 Visual Observations – Bottom of the Downcomer 

The fluid flow in the lower region of the downcomer is remarkably different from that 

seen in the upper connector and corresponds very well with the gas holdup data.  The fluid 

flow in this region is always downward, and the bubbles (when present) are carried by the 

fluid from the top of the downcomer through the imaging region to the base of the EALR. 

When the EALR is operated in the OV mode, the flow in the lower downcomer is 

noted to be single phase for UG ~< 2.0 cm/s (Figure 4.8a).  Once UG ~> 2.0 cm/s, the flow 

begins to transition from single phase flow to two phase flow (Figure 4.8b).  As shown in 

Figure 4.8b through Figure 4.8d when UG is further increased, the fluid flow remains two 

phase where the bubble density changes significantly for 2.0 ~< UG ~< 8.0 cm/s.  When 

UG ~> 8.0 cm/s, the bubble density increases slightly, if at all. 

The visual observations in the downcomer for the CV mode are significantly different 

from those found for the OV mode.  As shown in Figure 4.9, the relative bubble size for all 

UG is very small when compared to similar conditions for the OV mode.  The bubble density 

appears to change linearly with UG; however, the overall gas holdup for this operating mode, 

as will be discussed in Section 4.2, is so small that it can not be measured with the given 

equipment to verify this trend. 
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Figure 4.8: External loop reactor flow behavior and gas holdup in the bottom of the 

downcomer for open vent mode. 

 
Figure 4.9: External loop reactor flow behavior and gas holdup in the bottom of the 

downcomer for closed vent mode. 

4.2 Gas Holdup 

This section presents and discusses the gas holdup data collected for the EALR.  The 

gas holdup data will be presented using four sub-sections: (i) tap water gas holdup, (ii) 
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deionized water gas holdup, (iii) KCl solution and nitrosomonas solution gas holdup, and (iv) 

tap water gas holdup correlations.  The data presented in this section is a portion of the gas 

holdup data collected and chosen to illustrate the general trends observed.  All of the gas 

holdup data is presented for each condition in Appendix C. 

4.2.1 Tap Water Gas Holdup 

The effect of aeration plate open area ratio on gas holdup is shown in Figure 4.10 

when the EALR is operated as a bubble column (BC mode).  The open area ratio has a 

negligible effect on gas holdup at low UG (UG ~< 5.0 cm/s) where the corresponding bubble 

column flow regime is homogeneous.  At medium UG (5.0 cm/s ~< UG ~< 12.0 cm/s), where 

the bubble column flow is in the transition regime, gas holdup behavior is found to deviate 

among the three plates.  In the transition regime, when A < 1%, gas holdup increases with 

increasing gas flow until a local maxima is achieved, decreases slightly, and then begins to 

converge as UG continues to increase into the heterogeneous flow regime.  In the case when 

A = 2.22%, the gas holdup trend deviates from that with A < 1% in the transition and 

heterogeneous flow regimes and continually increases with increasing UG.  Similar trends 

have also been reported for a 15.2 cm ID semi-batch bubble column using similar aerator 

plates [140]. 
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Figure 4.10: Gas holdup using different aeration plates when the external airlift loop 

reactor is operated in bubble column mode. 

To further study the effect of UG on gas holdup in the EALR, the reactor is operated 

in the OV and CV modes and compared to the BC mode.  The effect of EALR operational 

mode on gas holdup is shown in Figure 4.11 for A = 0.62%.  When UG ~< 3.5 cm/s, the 

operational mode has a negligible effect on riser gas holdup, εr.  When UG ~> 3.5 cm/s, there 

appear to be slight differences in εr, but this variation is small, and in some cases, the degree 

of variation is not more than the expected measurement error.  It is apparent that aside from 

minor variations in magnitude, εr is, at most, a weak function of EALR operational mode for 

the given reactor geometry. Similar results are observed for A = 0.99 and 2.22%. 



www.manaraa.com

 152

Superficial Gas Velocity (cm/s)

G
as

H
ol

du
p

(-
)

0 5 10 15 200

0.1

0.2

0.3

OV Mode
CV Mode
BC Mode
OV Mode Downcomer

A = 0.62%
Tap Water

Riser

Downcomer

 
Figure 4.11: Effect of external airlift loop reactor operation mode on gas holdup for 

A = 0.62%. 

Note that the downcomer gas holdup, εd, is only shown for the OV mode in Figure 

4.11  because εd is negligible when the EALR is operated in the CV mode and nonexistent 

for the BC mode.  For UG < 2 cm/s, εd ≈ 0, which agrees with visual observations made at 

these operating conditions.  When 2 ~< UG ~< 10 cm/s, εd increases sharply with increasing UG.  

Further increases in UG result in no change in εd. Note that for most cases, εd is 

approximately three times smaller than εr for the OV mode and εd ≈ 0 for the CV mode. 

Figure 4.12 shows the effect of aeration plate open area ratio on gas holdup for the 

OV mode of operation.  The εr trends between aeration plates for the OV mode are similar to 

the variations observed when the EALR is operated in BC mode.  Figure 4.12 also shows no 

significant variation in εd for the different aeration plates considered in this study. 
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Figure 4.12: Aerator plate open area ratio effect on gas holdup for open vent mode 

external airlift loop reactor operation. 

4.2.2 Deionized Water Gas Holdup 

The effect of EALR mode of operation and aerator plate open area ratio on gas 

holdup is shown Figure 4.13 and Figure 4.14 when deionized water is used as the working 

fluid.  The change in εr with UG for the deionized water (Figure 4.13) closely resembles the 

trends observed for tap water with a few slight differences.  First, it appears that εr for the CV 

mode of operation more closely resembles the BC mode of operation for deionized water 

than it did for tap water.  Second, the locations of the local εr maximum and minimum appear 

to occur at higher UG for deionized water versus tap water, indicating that the onset of 

slugging in the heterogeneous flow regime in the riser is delayed from UG ≈ 10 cm/s for tap 

water to UG ≈ 12 cm/s for deionized water.  Third, the OV mode εd response to increasing UG 
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resembles more closely the εr response for the deionized water than it did for the tap water, 

where there is a more pronounced local εd maximum at UG ≈ 10 cm/s and a greater decline in 

εd for UG > 14 cm/s.  Likewise when the gas holdup responses in Figure 4.14 are compared to 

those in Figure 4.12, most of the observed differences are small.  The one exception is a 

notable difference in the εd response to UG when A = 2.22% where εd for the deionized water 

case is shown to be completely independent of UG for UG > 8 cm/s, a trend that is not seen 

for any other operating conditions.  The gas holdup results for tap water and deionized water 

show that, albeit minor, differences in both riser and downcomer gas holdup do not appear to 

be significantly affected by removing compounds from the tap water when it is deionized.  

This suggests that from a hydrodynamic stand point, there is little benefit associated with 

using deionized water over tap water.  



www.manaraa.com

 155

Superficial Gas Velocity (cm/s)

G
as

H
ol

du
p

(-
)

0 5 10 15 200

0.1

0.2

0.3

OV Mode Riser
CV Mode Riser
BC Mode Riser
OV Mode Downcomer

A = 0.62%
DI Water

Riser

Downcomer

 
Figure 4.13: Gas holdup as a function of superficial liquid velocity and external airlift 

loop reactor operation using deionized water when A = 0.62%.  
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Figure 4.14: Gas holdup as a function of superficial liquid velocity and aerator plate 

open area using deionized water for the OV mode of external airlift loop 
reactor operation. 
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4.2.3 KCl Solution and Nitrosomonas Solution Gas Holdup 

Water containing salt and inorganic compounds are known to influence riser and 

downcomer gas holdup in EALRs, see Section 2.3.6.  To determine how gas holdup is 

affected by these types of compounds, riser and downcomer gas holdup is measured in the 

EALR using a 0.07 M KCl solution and a 0.04 M nitrosomonas solution and compared to tap 

and deionized water gas holdup results (Figure 4.15). 
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Figure 4.15: Gas holdup as a function of superficial liquid velocity and fluid type for the 

OV mode external airlift loop reactor where A = 0.62%. 
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Figure 4.15 shows that the riser and downcomer gas holdup for the KCl and 

nitrosomonas solutions are nearly identical for all UG studied.  The observed riser gas holdup 

response with increasing UG for these two solutions is similar to that observed for both tap 

and deionized water, with the exception that the riser gas holdup values were higher and that 

the onset of heterogeneous flows appears to occur later at UG ≈ 14 cm/s.  While the riser gas 

holdup mostly differs in magnitude, the downcomer gas holdup includes the increase in 

magnitude as well as increasing differently with UG.  The downcomer gas holdup local 

maxima for the KCl and nitrosomonas solutions are more pronounced than those observed 

for tap and deionized water.  Visual observations noted during these two tests also indicate 

that εd significantly increases with the addition of the ionic compounds.  The gas bubble size 

in the riser appears to be smaller also, suggesting that bubble coalescence is reduced by the 

addition of the ionic compounds.  Similar trends have been observed by others [9, 20, 25, 40, 

65-67, 81, 141] (see Section 2.3.6). 

4.2.4 Gas Holdup Correlations 

Sections 4.2.1 through 4.2.3 present gas holdup data for all three reactor flow 

regimes; however, the literature related to EALRs, unlike BCRs, typically only consider gas 

holdup data in the homogeneous and transitional flow regimes.  Therefore only the gas 

holdup collected for superficial gas velocities less than UG ≤ 10 cm/s will be used to show 

how this reactor compares to other EALRs having different downcomer to riser cross-
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sectional areas (AR), as flow conditions greater than UG = 10 cm/s are typically 

heterogeneous in this EALR. 

The gas holdup data collected for this particular EALR is compared with literature 

correlations and plotted in Figure 4.16.  The selected correlations, listed in Table 4.1, were 

developed for varying EALR configurations having ARs that ranged from 0.11 to 1.0, and 

were reported by the corresponding authors to fit their data with correlation coefficients 

greater than 0.96.  The predicted εr corresponds to predictions using the respective 

correlations from the literature and the measured εr corresponds to the tap water εr data from 

this study.  If the correlation correctly predicted the experimental data, the symbols in Figure 

4.16 would fall on the x = y line.  Figure 4.16 shows that correlations #5 through #7 represent 

the data very well for gas holdup values above εr ≈ 0.07 while correlations #1 to #4 exhibit 

up to a 20% disparity for the same range of εr values.  There is at least a 20% disparity at 

lower gas holdups for correlations #1 to #7 and the disparity between the data and correlation 

#8 is never less than ~30%.  The fact that most of the correlations presented here for other 

EALRs do not fit the current data very well reinforces the idea that most empirical scale up 

equations for EALRs are not generally applicable to other EALRs, especially if there are 

significant geometric or operating differences.  However, it is evident from these correlations 

that the data can be characterized by: 

r GU βε = α  (4.1) 
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where α and β are empirically determined for specific EALR configurations.  In fact, many of 

the correlations shown in Table 4.1 are in this form, where α is a combination of empirically 

determined geometric parameters and constants; however, it is evident from the many 

differing correlations that α has yet to be sufficiently identified in terms of physical 

parameters, suggesting that Equation (4.1) is sufficient at this time for predicting εr.  Figure 

4.17 shows how well the measured εr was predicted using Equation (4.1).  In the 

homogeneous flow regime (0.5 ~< UG ~< 5 cm/s) the values for α and β are 0.022 and 1.17, 

respectively, and in the transitional flow regime (5 ~< UG ~< 10 cm/s) α and β were found to 

equal 0.059 and 0.58, respectively (Table 4.2).  While the determined values are slightly 

different from those proposed by Chisti [2] and Merchuk [22], these new coefficients, when 

used with Equation (4.1), fit the data within ±15%. 
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Figure 4.16: Variation in riser gas holdup correlations used to predict gas holdup in an 

external airlift loop reactor.  See Table 4.1 for correlation legend. 
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Table 4.1: Summary of the correlations selected from the literature relating gas 
holdup to superficial gas velocity and external airlift loop reactor 
geometries and used in Figure 4.16. 
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Figure 4.17: Parity plot of the tap water riser gas holdup correlation expressed by 

Equation (4.1) using the coefficients and exponents shown in Table 4.2. 
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Table 4.2: Tap water riser gas holdup correlation coefficients and exponents for 
Equation (4.1) shown in Figure 4.17. 

 

4.3 Liquid Velocity 

This section presents the results of the liquid velocity tests.  Like gas holdup, the 

liquid velocity is measured for unconditioned tap water, deionized tap water, a KCl solution, 

and a nitrosomonas solution.  This section is divided into three sub-sections covering (i) tap 

water liquid velocity, (ii) deionized water, KCl solution, and nitrosomonas solution liquid 

velocity, and (iii) tap water liquid velocity correlations.  The first sub-section about the tap 

water data includes an in depth look at liquid velocity, its dependence on gas holdup, and its 

relationship to operating conditions, while the second sub-section compares and contrasts the 

tap water liquid velocity data with the deionized water, KCl solution, and nitrosomonas 

solution data.  All of the liquid velocity data is presented for each condition in Appendix C. 

4.3.1 Tap Water Liquid Velocity 

 The bulk density difference of the two vertical columns in an EALR provides the 

driving force for liquid circulation (i.e., ULr and ULd). At steady state conditions, the driving 

force is balanced by reactor flow losses due to fluid friction and changes in reactor geometry 

[2, 21, 137, 142, 143].  Thus, as the difference between εr and εd increases with increasing 

UG, the driving force must also increase due to bulk density changes associated with 
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changing gas holdup, creating a potential for ULr to increase.  However, in practice, ULr may 

increase or decrease with UG depending on how the reactor flow losses change with UG.  

Hence, ULr can be considered largely a function of UG and reactor geometry. 

The effect of UG on ULr, as a function of aerator plate open area ratio and mode of 

operation, is shown in Figure 4.18.  The aerator plate open area ratio has a minimal effect on 

ULr for both modes of operation.  When the EALR is operated in the OV mode, ULr increases 

to a local maximum and then decreases sharply as UG increases, and eventually becomes 

independent of UG.  Therefore, three liquid flow regimes are identified for the OV mode of 

operation: (i) unrestricted flow, (ii) restricted flow, and (iii) fully restricted flow. 
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Figure 4.18: Aerator plate open area ratio and mode of operation effects on riser 

superficial liquid velocity. 
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In the unrestricted flow regime, ULr increases sharply with increasing UG.  This initial 

increase in ULr corresponds to the rapid rise in εr and a much smaller rise in εd (Figure 4.12).  

Hence, when UG ~< 3.5 cm/s, ULr is primarily a function of the bulk density difference; this 

observation agrees with the experimental results presented by others [18, 21, 24, 48, 144].  

When the bulk density difference (εr - εd) is plotted as a function of ULr (Figure 4.19), 

the relationship between the driving force and liquid circulation becomes evident.  As a 

result, Figure 4.19 is useful in identifying the liquid flow regimes and their transition points.  

Figure 4.19 shows that the shift from the unrestricted flow regime to the restricted flow 

regime occurs at ULr ≈ 3.7 cm/s, which roughly corresponds to the point where bubble 

formation is observed in the downcomer.  As noted earlier, stationary gas bubble formation 

in the top of the downcomer begins at UG ≈ 3.5 cm/s. 
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Figure 4.19: Relationship between driving force (εr – εd) and superficial liquid velocity 

as a function of aerator plate open area ratio for the open vent mode 
external airlift loop reactor operation. 

Increasing UG in the restricted flow regime results in a decrease in ULr.  Figure 4.19 

also shows that ULr decreases in this regime as the bulk density difference increases, which is 

contrary to the observations made for the unrestricted flow regime.  Hence, when ULr is a 

function of the flow losses, geometry, and driving force, the flow losses are considered to 

dominate in this flow regime.  The dominance of the flow losses in this regime is attributed 

to stationary gas bubble growth in the downcomer, which causes the flow losses to increase 

rapidly with increasing in UG.  Initially, as the stationary gas bubble begins to grow 

(3.5 ~< UG ~< 5 cm/s), the effective AR decreases, creating a choked flow condition in the 

downcomer that corresponds to the ULr local maximum shown in Figure 4.18.  Furthermore, 

as UG continues to increase (5 cm/s ~< UG ~< 10 cm/s), the bubble length increases until it 
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reaches a maximum length at UG ≈ 10 cm/s.  Stationary gas bubble length change in this 

regime is a result of an increase in the bulk density difference and the initial flow restriction 

in the downcomer due to liquid separation from the downcomer wall.  Hence, even though 

the driving force increases, the flow losses increase faster with UG causing ULr to decrease.  

Essentially, the downcomer flow has become choked. 

As shown in Figure 4.18, ULr continues to decrease with increasing UG due to 

stationary gas bubble development and growth until a maximum stationary gas bubble size is 

reached.  This transition is easily identified in Figure 4.19 and occurs when the driving force 

becomes independent of ULr (≈ 2.3 cm/s), which corresponds to roughly UG = 10 cm/s.  

Under these conditions, the liquid flow in the downcomer is fully choked and the EALR 

hydrodynamics are similar to those of a bubble column. 

When the EALR is operated in the CV mode, the ULr trends as a function of UG are 

limited to the later two flow regimes discussed for the OV mode operation (Figure 4.20).  As 

discussed in the hydrodynamic observations, a gas pocket forms immediately in the 

horizontal connection for the lowest UG and a stationary gas bubble forms in the downcomer 

soon after as UG is increased, causing the EALR to operate in the restricted flow regime.  It is 

worth noting that even though εd exists for this mode of operation, the magnitude is so small 

that it can not be measured with any degree of accuracy, and thus is considered negligible.  

The driving force for the CV mode of operation becomes solely a function of εr, unlike the 

OV mode where the driving force is a function of the difference between εr and εd. 
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Figure 4.20: Relationship between driving force (εr – εd) and superficial liquid velocity 

as a function of aerator plate open area ratio for the closed vent mode 
external airlift loop reactor operation. 

For the CV mode of operation shown in Figure 4.20, the restricted flow regime is 

separated into a decreasing and increasing restricted flow regimes.  Initially, as UG increases, 

the fluid flow is characterized as decreasing restricted flow where, as shown in Figure 4.18, 

ULr decreases with increasing UG.  This decrease in ULr continues until a local minimum is 

reached at UG ≈ 7 cm/s, which corresponds to εr ≈ 0.18 (Figure 4.11).  The decrease in ULr in 

this regime is again attributed to the development and growth of the stationary gas bubble in 

the downcomer. Once the minimum ULr is reached, ULr begins to increase with increasing 

UG, switching the flow regime to the increasing restricted flow regime.  In this flow regime, 

ULr continues to increase with UG and εr until UG ≈ 14 cm/s and εr ≈ 0.24.  It is important to 

note that the stationary gas bubble growth is observed to be relatively constant as UG 
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increases through both restricted flow regimes, indicating that for the decreasing restricted 

flow regime, flow losses initially exceed the increase in the driving force.  This effect then 

reverses as the flow regime changes to increasing restricted flow, indicating that in this 

regime, the driving force is larger than the flow losses. 

As shown in Figure 4.18, ULr is independent of aerator plate open area ratio; however, 

the onset of the fully restricted flow regime for the CV mode is influenced by the aerator 

plate open area ratio.  The shift from the increasing restricted flow regime to the fully 

restricted flow regime occurs at UG ≈ 13 cm/s for A < 1%. For A = 2.22%, the transition into 

the fully restricted flow regime occurs at UG ≈ 19 cm/s, but more data with UG > 20 cm/s is 

needed to fully understand the transition location for the CV mode of operation when 

A = 2.22%.  As discussed for the open vent mode of operation, ULr in the fully restricted flow 

regime is independent of UG. 

4.3.2 Deionized Water, KCl Solution, and Nitrosomonas Solution Liquid 
Velocity 

The riser superficial liquid velocity as a function of aerator open area ratio and UG 

when deionized water is used in place of tap water is shown in Figure 4.21.  Figure 4.21 

shows that the ULr change with increasing UG is similar to that shown in Figure 4.18 for tap 

water.  As with tap water, ULr is dependent on EALR mode of operation and not a function of 

aerator plate open area ratio.  When ULr data for tap water and deionized water are direct 

compared as shown in Figure 4.22, it is seen that there is no significant difference in ULr for 
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UG < 8.0 cm/s; however, for UG > 8.0 cm/s differences in ULr are noted where ULr is higher 

for deionized water.  The increase in ULr when UG > 8.0 cm/s is attributed to the shift in the 

local εr maximum and the lower εd for deionized water compared to tap water. 
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Figure 4.21: Aerator plate open area ratio and mode of operation effects on riser 

superficial liquid velocity for deionized water. 

Figure 4.22 also shows that ULr for the KCl and nitrosomonas solutions changes with 

UG much like ULr did for tap water, however, the response is somewhat different.   For 

UG < 2.0 cm/s, there is no observable difference in ULr for any of the liquid media 

considered.  As UG increases from 2 cm/s to 10 cm/s, a considerable difference in ULr is 

noted.  For the nitrosomonas solution ULr initial behaves like tap and deionized water, but 

then dramatically drops to a local minimum at UG ≈ 10 cm/s and then converges back to ULr 

values observed for tap water.  Similarly, ULr for the KCl solution also declines dramatically 
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like that seen for the nitrosomonas solution; however, the local maximum at UG ≈ 4 cm/s is 

much lower for the KCl solution than for all of the other media types.  Otherwise the KCl 

solution ULr behaves much like the nitrosomonas solution ULr where the slight difference in 

behaviors that occur between 10 ~< UG ~< 16 cm/s are due to magnifications of the minor 

differences in εd that get magnified when ULr is calculated using Equations (3.5) and (3.6). 
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Figure 4.22: Liquid medium and mode of operation effects on riser superficial liquid 

velocities for A = 0.62%. 

Figure 4.22 shows that there is no significant change in ULr due to liquid phase 

properties for the CV mode of operation.  This similarity in the ULr response does not follow 
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the trends observed for the OV mode of operation where ULr changed with changes in εr and 

εd.  The lack of a change in the CV mode ULr with fluid types indicates that this mode of 

operation is dominated by flow restrictions in the upper horizontal connector and 

downcomer.  Since the tap water and deionized water results showed no real change, the CV 

mode of operation tests were not completed using the KCl and nitrosomonas solutions as no 

significant change in ULr is expected. 

4.3.3 Tap Water Liquid Velocity Correlations 

Figure 4.23 compares the tap water ULr data for this work to the ULr values reported 

in the literature for EALRs with similar geometries and ARs that vary from 0.04 to 1.0 [11, 

21, 22, 37].  The magnitude of ULr for the current study is similar to that reported in these 

works for EALRs with an Ad/Ar ratio smaller than 0.11; however, the response of ULr with 

increasing UG is much different due to the unique flow conditions observed in this EALR.  

Therefore, any attempt to predict ULr for this reactor using the published correlations failed 

due to the changing liquid flow regimes in this reactor (Section 4.3.1).  However, as 

suggested by Gavrilescu and Tudose [11] the ULr data for the current study is a function of 

UG with a power-law dependence in the form: 

Lr GU U β= α  (4.2) 

where, as explained by Gavrilescu and Tudose [11], α and β are not constant for the entire 

range of UG.  The exponent β was reported to be dependent on UG while α depends on the 

reactor geometry.  Thus, for this EALR α is best described by: 



www.manaraa.com

 172

( )r d
γα = ϕ ε − ε  (4.3) 

where (εr – εd) accounts for the driving force within the EALR which is a function of the flow 

restriction in the downcomer. 

Using the empirically determined coefficients listed in Table 4.3, the predicted ULr 

values are compared to the measured ULr data points in Figure 4.24.  The proposed 

correlation as shown in Figure 4.24 predicts the experimental data with an error of less than 

10%. 

X
X X X X X X X X

UG (cm/s)

U
Lr

(c
m

/s
)

0 5 10 15 20
0

10

20

30

40

50

Choi & Lee 1993 (Ad/Ar = 0.11)
Choi & Lee 1993 (Ad/Ar = 0.28)
Choi & Lee 1993 (Ad/Ar = 0.53)
Merchuk 1986 (Ad/Ar = ?)
Gavrilescu & Tudose 1996 (Ad/Ar = 0.04)
Gavrilescu & Tudose 1996 (Ad/Ar = 0.11)
Gavrilescu & Tudose 1996 (Ad/Ar = 0.28)
Gavrilescu & Tudose 1996 (Ad/Ar = 0.53)
Gavrilescu & Tudose 1996 (Ad/Ar = 1)
This Study - OV Mode (Ad/Ar = 0.06)
This Study - CV Mode (Ad/Ar = 0.06)

X

 
Figure 4.23: Riser superficial liquid velocity in external airlift loop reactors as a 

function of superficial gas velocity for reactors with similar geometric 
configurations and downcomer to riser cross sectional area ratios that range 
from 0.04 to 1.0. 
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Figure 4.24: Parity plot of the ULr correlation expressed by Equations (4.2) and (4.3). 

Table 4.3: Riser superficial liquid velocity correlation coefficients and exponents for 
Equations (4.2) and (4.3) shown in Figure 4.24. 

 

4.4 Gas-Liquid Mass Transfer 

This section presents the gas-liquid mass transfer results for the EALR.  This section 

will be presented in three sub-sections (i) oxygen gas-liquid mass transfer, (ii) carbon 

monoxide gas-liquid mass transfer, and (iii) gas-liquid mass transfer correlations.  The data 

presented in this section are tabulated in Appendix D. 
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4.4.1 Oxygen Gas-Liquid Mass Transfer 

Figure 4.25 shows the oxygen kLa as both a function of UG and EALR mode of 

operation for A = 0.62% and deionized water.  The oxygen kLa for all three modes increases 

with UG nearly the same way as εr did for similar operating conditions (Figure 4.11).  The 

oxygen kLa for all three modes of operation shown in Figure 4.25 initially increases with UG 

until the flow regime in the reactor approaches the heterogeneous flow regime at about 

UG ≈ 10 cm/s, at which point a local maximum in oxygen mass transfer is observed.  For 

UG > 10 cm/s, the oxygen mass transfer begins to decline with increasing UG until a local 

minimum is reached somewhere between 14 ~< UG ~< 16 cm/s, at which point oxygen kLa 

begins to slightly increase with UG.  This decrease and then slight increase in kLa for 

UG > 10 cm/s is believed to be a result of gas slugging within the EALR that significantly 

reduces the gas bubble interfacial surface area available for gas-liquid mass transfer. 
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Figure 4.25: Oxygen volumetric mass transfer coefficient shown as a function of UG and 

external airlift loop reactor mode of operation for A = 0.62% and deionized 
water. 

Just as with εr, there appears to be little difference in the measured oxygen kLa values 

for the BC and CV modes of operation, and a slight difference between the measured oxygen 

kLa values for the OV mode of operation and the other two modes of operation.  When the 

observed lower kLa and εr are compared for the OV mode of operation, it becomes apparent 

that kLa is significantly influenced by factors that also effect εr.  Similarly, oxygen kLa as a 

function of aerator plate open area ratio and UG (Figure 4.26) again behaves like εr (Figure 

4.14) for similar operating conditions where the only major difference is that the maximum 

oxygen kLa occurs at a lower UG. 
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Figure 4.26: Oxygen volumetric mass transfer coefficient shown as a function of UG and 

aerator plate open area ratio for external airlift loop reactor open vent mode 
of operation and deionized water. 

The results presented in Figure 4.25 and Figure 4.26 show that EALR mode of 

operation and aerator plate open area ratio in and of themselves do not impact gas-liquid 

mass transfer rates, but that gas-liquid mass transfer rates are most notably impacted by 

changes in εr.  Since gas-liquid mass transfer appears to be independent of most operating 

conditions and primarily a function of UG, it is concluded that gas-liquid mass transfer is 

primarily a function of gas holdup for deionized water. 

Since most biological applications do not use just deionized water, additional oxygen 

mass transfer tests are completed using a 0.07M KCl solution and a 0.04M nitrosomonas 

solution for A = 0.62% and the OV vent mode of operation.  The observed kLa values for the 

KCl and nitrosomonas solutions are presented in Figure 4.27 and compared to those observed 
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for deionized water with and without a surfactant.  For the KCl and nitrosomonas solutions, 

the oxygen kLa increases with UG for the entire range of UG considered except when UG = 16 

and 18 cm/s for the nitrosomonas solutions.  The measured oxygen kLa values for these two 

solutions are only slightly greater than those observed using deionized water for UG < 10 

cm/s while being much greater for UG > 10 cm/s.  The magnitude of this observed difference 

between the oxygen kLa values for UG < 10 cm/s is expected and is very similar to results 

presented in the literature [20, 63, 69, 80] and discussed in Section 2.3.7.  However, the 

magnitude of the observed difference in oxygen kLa values between the deionized water and 

KCl or nitrosomonas solutions for UG > 10 cm/s is much larger than expected and greater 

than anything presented in the reviewed literature in Section 2.3.7.  One possible explanation 

for this large discrepancy between the measured data and the results reviewed in the literature 

is that most of the results presented in the literature review are for conditions representing the 

homogeneous and transitional flow regimes in the riser, whereas this study includes kLa data 

in the heterogeneous flow regime (UG > 10 cm/s).  Yet, this is not the primary factor 

influencing the observed difference in kLa values for the deionized water and the KCl and 

nitrosomonas solutions.  In fact, the difference is believed to be largely due the 

hydrodynamic conditions that exist in the EALR for UG > 10 cm/s.   
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Figure 4.27: Oxygen volumetric mass transfer coefficient shown as a function of UG and 

fluid type for A = 0.62% and external airlift loop reactor open vent mode 
of operation. 

When UG > 10 cm/s, εr is noted to be independent of UG suggesting that kLa should 

likewise be independent of UG, assuming of course, that kLa is a function of εr for all 

operating conditions.  However, this supposition assumes that the bubble interfacial surface 

area increases proportionally with increasing εr, which is not entirely true in the 

heterogeneous flow regime because large bubbles form that have diameters approaching the 

same order of magnitude as the riser diameter.  Hence, in the heterogeneous flow regime, εr 

may remain constant while the bubble interfacial surface area declines.  This explains why 

kLa generally decreases when εr is relatively constant for deionized water and UG > 10 cm/s.   

In the case of the KCl and nitrosomonas solutions, another trend is observed, where 

kLa continues to increase with UG even though εr remains constant.  As before, large bubbles 
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are present in the riser, which reduces the effective bubble interfacial surface area, but the 

presence of inorganic compounds for these two test conditions is believed to inhibit 

formation of these large bubbles to a certain extent, while aiding in the formation of very 

small bubbles as the large bubbles form and break up.  Thus, even though there are large 

bubbles present, it is believed that the presence of the more numerous smaller bubbles allows 

the kLa values to continue to increase with UG in the heterogeneous flow regime, which is not 

observed when deionized water is considered. 

Figure 4.27 also shows oxygen kLa data collected using deionized water containing an 

unknown surfactant.  The data collected for the deionized water having the surfactant is the 

result of an unexpected contaminant being introduced into the water during the first set of 

deionized water tests.  Even though this contamination happened accidentally and the exact 

water quality is unknown, the results of these tests were highly repeatable as shown Figure 

4.28.  Therefore, it is felt that the data gathered under these circumstances is not completely 

useless and may provide some useful insight. In fact, the oxygen kLa in this case is observed 

to increase in a linear fashion with UG when the surfactant is present while not varying 

significantly with operational mode (Figure 4.28), indicating that kLa is primarily a function 

of UG for this condition.  As an aside, attempts to exactly reproduce the accidental conditions 

were unsuccessful; although, a few of the attempts using trace amounts of dish soap 

approached the data shown in Figure 4.28, indicating that dish soap was the probable 

contaminant. 
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Figure 4.28: External airlift loop reactor volumetric oxygen mass transfer rate as a 

function of superficial gas velocity and mode of operation for A = 0.62%.   

This linear relationship between kLa and UG is much different from those observed 

previously for the deionized water, the KCl solution, and the nitrosomonas solution (Figure 

4.27) where kLa is a function of UG and εr.  The difference in the observed trends is thought, 

in part, to be a result of the surfactant creating a more rigid bubble surface that increases the 

liquid film mass transfer resistance.  The addition of the surfactant is also believed to 

increase the bubble surface tension and leads to an increase in the initial bubble size at the 

aerator plate [141].  However, the exact cause of the reduction in kLa is unknown due to the 

fact that the exact composition of the surfactant is unidentifiable. 
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4.4.2 Carbon Monoxide Gas-Liquid Mass Transfer 

Carbon monoxide kLa data is collected simultaneously with oxygen kLa for a limited 

number of tests as listed in Table 3.2.  The carbon monoxide kLa data is limited to UG < 14 

cm/s for most of the tests due to errors associated with being unable to collect the liquid 

samples faster than once every three seconds.  Figure 4.29 shows the carbon monoxide kLa as 

a function of both UG and EALR mode of operation for A = 0.62% and deionized water.  The 

carbon monoxide kLa is found to be independent of EALR mode of operation.  Like the 

oxygen kLa values, the carbon monoxide kLa values increase with increasing UG for 

UG < 10 cm/s.  For UG > 10 cm/s, it appears that carbon monoxide kLa may become 

independent of UG; however, due to the number of data points above UG > 10 cm/s, this trend 

is not verifiable.  Carbon monoxide kLa also differs slightly, if at all, with aerator plate open 

area ratio as shown in Figure 4.30, much like the oxygen kLa in Figure 4.26, while 

maintaining the same general relationship with UG.  Similarly, the carbon monoxide kLa 

shown in Figure 4.31 for the different fluid types again resembles the oxygen kLa data shown 

in Figure 4.27, where the measured kLa is highest for the KCl and nitrosomonas solutions and 

lowest for the deionized water having a surfactant.  These results suggest that gas-liquid mass 

transfer for carbon monoxide and oxygen are influenced similarly by operating conditions in 

the EALR. 



www.manaraa.com

 182

Superficial Liquid Velocity (cm/s)

C
ar

bo
n

M
on

ox
id

e
M

as
s

Tr
an

sf
er

C
oe

ffi
ci

en
t,

k La

0 5 10 15 200

0.1

0.2

OV Mode
CV Mode
BC Mode

A = 0.62%
DI Water

 
Figure 4.29: Carbon monoxide volumetric mass transfer coefficient shown as a function 

of UG and external airlift loop reactor mode of operation for A = 0.62% and 
deionized water. 
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Figure 4.30: Carbon monoxide volumetric mass transfer coefficient shown as a function 

of UG and aerator plate open area ratio for external airlift loop reactor open 
vent mode of operation and deionized water. 
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Figure 4.31: Carbon monoxide volumetric mass transfer coefficient shown as a function 

of UG and fluid type for A = 0.62% and external airlift loop reactor open 
vent mode of operation. 

4.4.3 Oxygen and Carbon Monoxide Gas-Liquid Mass Transfer 
Comparison 

The theoretical relationship between oxygen and carbon monoxide kLa values shown 

in Figure 4.32 is based upon the discussion presented in Section 2.2.8 where the carbon 

monoxide kLa is related to oxygen kLa by [2, 33]: 

( ) ( )
2

2

n

CO
L LCO O

O

Dk a k a
D

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (4.4) 

where DCO and DO2 equal 2.17 and 2.35 cm2/s [145], respectively, and n is equal to 0.5 to 1.0 

depending on the model used to represent gas-liquid mass transfer.  This theoretical 

relationship suggests that carbon monoxide kLa should always be less than oxygen kLa and 

that the difference between predicted values for the mass transfer models is less than 10%.  
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The data collect in this study does not fully support this theoretical relationship.  In fact, the 

observed relationships between oxygen and carbon monoxide mass transfer in this work 

suggest that the use of these models may be somewhat limited depending on the operating 

environment. 
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Figure 4.32: The theoretical relationship between oxygen and carbon monoxide mass 

transfer coefficients based upon the mass transfer models presented in 
Section 2.2.8. 

A comparison of the oxygen and carbon monoxide kLa for the OV mode of operation 

using deionized water is shown in Figure 4.33.  An empirical fit of Equation (4.4) to 

determine the value of n that best represents the data shown in Figure 4.33 indicates that 

n = 0.54 for these three test conditions.  This implies that the penetration, surface renewal, or 

film-penetration model best describes the relationship between oxygen and carbon monoxide 

mass transfer for these three test conditions.  However, this empirical fit only considers 12 
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data points; hence, it could be argued that any of the models presented in Section 2.2.8 are 

appropriate. 
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Figure 4.33: A comparison of carbon monoxide and oxygen gas-liquid mass transfer 

data for the open vent mode of external loop airlift reactor using deionized 
water showing how Equation (4.4) fits the data when n = 0.54. 

When the kLa values are compared for the CV and BC modes of operation and 

A = 0.62% using deionized water, a slightly different trend is observed and shown in Figure 

4.34.  For these two conditions the carbon monoxide kLa is much lower than suggested by the 

theoretical relationships.  Again, using Equation (4.4) to characterize the data presented in 

Figure 4.34, n = 2.72, a value much higher than those suggested by the mass transfer models.     
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Figure 4.34: A comparison of carbon monoxide and oxygen gas-liquid mass transfer 

data for A = 0.62% using deionized water showing how Equation (4.4) fits 
the data when n = 2.72. 

Furthermore, a comparison of the kLa data collected using the KCl and nitrosomonas 

solutions indicate that carbon monoxide kLa are slightly higher than expected (Figure 4.35).  

For these two conditions, n = -0.41 when Equation (4.4) is fit to the data, suggesting that the 

addition of inorganic compounds increases carbon monoxide mass transfer when compared 

to oxygen mass transfer.  Likewise, Figure 4.36 shows that the addition of a surfactant to 

deionized water has a similar but more pronounced effect.  The addition of the surfactant 

results in n = -1.11 for the three test conditions considered.  Thus, the three fluid conditions 

presented in Figure 4.35 and Figure 4.36 indicate that the addition of additives to deionized 

water may be a method to increase carbon monoxide mass transfer relative to oxygen mass 

transfer. 
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Figure 4.35: A comparison of carbon monoxide and oxygen gas-liquid mass transfer 

data for A = 0.62% using the KCl and nitrosomonas solutions showing 
how Equation (4.4) fits the data when n = -0.41. 
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Figure 4.36: A comparison of carbon monoxide and oxygen gas-liquid mass transfer 

data for A = 0.62% using the deionized water with a surfactant showing 
how Equation (4.4) fits the data when n = -1.11. 
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Figure 4.33 through Figure 4.36 show that the value of n may vary depending on the 

operating conditions that exist in the EALR; however, if Equation (4.4) is fit to the kLa data 

for all of the test conditions, n = 0.53.  So if all of the data are considered together, it would 

appear as if the penetration, surface renewal, or film-penetration models accurately predict 

carbon monoxide gas-liquid mass transfer.  However, the error associated with using 

Equation (4.4) with all of the data where n ≈ 0.5 is ±25% (Figure 4.37).  This would imply 

that the data collected is either quite erroneous or that the proposed models are not properly 

accounting for some important parameters that are selectively influencing gas-liquid mass 

transfer.  It is felt that the later is probably the case as all of the data included in this 

comparison are very repeatable.  One such possible parameter that could be of considerable 

importance is the negative ionic charge associated of carbon monoxide molecules and its 

relationship with compounds residing at the liquid bubble film.  Another such parameter that 

might be of importance is molecular size and shape of the two molecules being compared.  

Finally, the use of molecular diffusivities may not accurately represent the differing modes of 

molecular mass transfer in turbulent conditions.  Whatever the case may be, it is believed that 

relating the diffusivities for oxygen and carbon monoxide does not sufficiently describe the 

actual relationship between oxygen and carbon monoxide gas-liquid mass transfer in highly 

turbulent conditions where mass transfer is not purely molecular diffusion. 
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Figure 4.37: A comparison of carbon monoxide and oxygen gas-liquid mass transfer 

data showing how Equation (4.4) fits the data when n = 0.5. 

4.4.4 Gas-Liquid Mass Transfer Correlations 

Finally, when all of the mass transfer data as a whole are considered as a function of 

UG, two distinct trends are observed.  First, the kLa data for all conditions, except those 

involving the surfactant, seem to respond to UG in a fashion similar to εr.  Second, the kLa 

data collected for the conditions involving the surfactant respond to UG in a linear fashion 

(Figure 4.28). 

If all of the kLa data except that involving the surfactant are plotted as a function of εr, 

as shown in Figure 4.38, an interesting relationship is observed.  Figure 4.38 shows that kLa 

and εr are nearly linearly related; however, upon closer inspection, it is apparent that these 

two parameters have a power law relationship represented by: 
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  L rk a β= αε  (4.5) 

where α and β equal 0.95 and 1.34, respectively.  The predicted kLa using Equation (4.5) are 

compared to the measured values in Figure 4.39.  The observed kLa are predicted by 

Equation (4.5) with an error of approximately ±10%.  Now if the kLa data for the remaining 

test condition containing the surfactant is considered, a linear relationship relating kLa to UG 

of the following form is obtained: 

2L CO L Ok a k a= α  (4.6) 

where α equals 1.12. 
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Figure 4.38: Mass transfer coefficients plotted as a function of riser gas holdup for all 

test conditions expect for those containing the surfactant. 



www.manaraa.com

 191

Predicted Mass Transfer Coefficient, kLa

M
ea

su
re

d
M

as
s

Tr
an

sf
er

C
oe

ffi
ci

en
t,

k La

0 0.05 0.1 0.15 0.20

0.1

0.2

+10%

-10%

 
Figure 4.39: Mass transfer coefficients predicted by Equation (4.5). 

When considering the two different kLa responses to UG, it is easiest to consider how 

the liquid side mass transfer coefficient (kL) and the interfacial surface area (a) each 

contribute to the overall measured kLa [71].  For the simplest condition, where the working 

fluid in the EALR is just deionized water, the resistance to mass transfer due to the liquid 

film is considered constant, implying that kL must be independent of UG.  Hence, if kLa 

increases with increasing UG, the interfacial surface area must also be increasing with UG, 

which makes sense because for the deionized water condition, εr and kLa both increase with 

UG in a similar fashion.  This implies that the interfacial area part of kLa is dominant, 

indicating that mass transfer is largely a function of convective transport when only 

deionized water is studied.   
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For the more complicated conditions where the working fluid is the KCl or 

nitrosomonas solution, similar conclusions may be drawn.  This time while kL is still 

independent of UG, it can not be considered equal to the kL for the deionized water, in fact the 

addition of inorganic substances is believed to increase the resistance to gas diffusion [70] 

resulting in a lower kL.  Conversely though, the addition of inorganic compounds reduces 

bubble coalescence causing an increase in εr and interfacial area.  When these two effects are 

considered together, the resulting kLa may increase or decrease.  In this study, the addition of 

the inorganic compounds results in the measured kLa and εr values being higher than those 

observed with deionized water, but since the relationship between kLa and εr is similar to that 

observed for deionized water (Figure 4.39), it is again concluded that the interfacial area part 

of kLa is dominant and that mass transfer is largely a function of convective transport.   

For the remaining condition involving the addition of a surfactant to the deionized 

water, kL once again is considered independent of UG and different from that for the 

deionized water.  As before, kLa is observed to increase with UG, but with a linear 

relationship to UG instead of a power-law relationship with εr, indicating that an increase in 

the interfacial area with an increase in εr no longer has the same affect on mass transfer.  

Hence, it is thought that the surfactant in the deionized water causes mass transfer in this case 

to be diffusion limited. 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS  

5.1 Conclusions 

An extensive literature review was presented in Chapter 2.  This review demonstrated 

the complexity of the relationship between geometric and operating parameters and their 

influence on EALR hydrodynamics and gas-liquid mass transfer, where Figure 2.11 

attempted to illustrate these complex relationships.  This review also presented a brief 

summary of the major reactor types commonly encountered in bioprocessing applications, 

including some rules of thumbs typically used in choosing a reactor type for a specific 

application.  Likewise, techniques used to determine gas-liquid mass transfer were discussed 

along with methods used to measure dissolved gas concentrations for dynamic systems, 

where the pros and cons of these methods were assessed. 

Gas holdup and liquid superficial velocity results were presented for an external airlift 

loop reactor with three modes of operation (open downcomer vent, closed downcomer vent, 

and bubble column modes) for a range of aerator plate open areas ratios (A = 0.62, 0.99, and 

2.22%) and superficial gas velocities (UG ≤ 20 cm/s) using tap water, deionized water, 

0.07 M KCl solution, and 0.04 M nitrosomonas solution.  Geometric changes due to flow 

restrictions and mode of operation significantly affected the fluid flow hydrodynamics in the 

EALR.  Riser gas holdup was observed to be independent of aerator plate open area ratio and 

mode of operation.  Downcomer gas holdup was only significant when the EALR was 

operated with an opened downcomer vent (OV mode).  Both riser and downcomer gas 
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holdup were observed to vary with fluid type, where the highest gas hold values were 

observed for the KCl and nitrosomonas solutions.  Three liquid flow regimes were identified 

from the riser superficial liquid velocities: (i) unrestricted flow, (ii) restricted flow, and (iii) 

fully restricted flow regimes. For open and closed vent downcomer operation (OV and CV 

mode), riser superficial liquid velocity was independent of aerator plate open area ratio, and 

strongly dependent on the mode of operation. For open and closed downcomer vent operation 

(OV and CV mode), riser superficial liquid velocity was a function of superficial gas velocity 

in the unrestricted and restricted flow regimes, and independent of superficial gas velocity in 

the fully restricted flow regime. 

Riser gas holdup and liquid velocity were correlated to the superficial liquid velocity 

using relationships suggested by Chisti [2]and Gavrilescu and Toduse [11], respectively.  The 

developed correlations predicted the measured riser gas holdup and superficial liquid 

velocities within ±15% and ±10%, respectively. 

The bioassay method used to quantify dissolved carbon monoxide concentrations in 

CSTRs presented and used by Riggs [122], Kapic [123], and Ungerman [124] was simplified 

and updated in Section 3.7.  Major changes to the bioassay included a new method for 

preparing the test solution (Section 3.7.4.4) to reduce measurement errors and the use of JMP 

6.0 (SAS Institute Inc.) to perform spectral fitting using a least squares method, and kLa 

estimation using a nonlinear model fitting routine.  These changes, when implemented, 

reduced the complexity of the bioassay, making it more user friendly and reducing the time 

required for sample analysis; however, additional work is needed to increase the sampling 
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frequency from a maximum of one sample every three seconds to much faster rate such as 

one sample per every half second.  

Gas-liquid mass transfer results were presented for an external airlift loop reactor 

with three modes of operation for aerator plate open area ratios of A = 0.62, 0.99, and 2.22% 

and a range of superficial gas velocities (UG ≤ 20 cm/s) using deionized water, 0.07 M KCl 

solution, 0.04 M nitrosomonas solution, and deionized water with a surfactant.  Changes in 

reactor mode of operation did not influence gas-liquid mass transfer rates.  The gas-liquid 

mass transfer rates for the deionized water, the KCl solution, and the nitrosomonas solution 

were proportional to changes in gas holdup and increased with superficial gas velocity, while 

the gas-liquid mass transfer rates for deionized water with the surfactant were proportional to 

changes in UG.  The gas-liquid mass transfer rates for the KCl and nitrosomonas solutions 

had a similar magnitude and were significantly greater than those observed for deionized 

water, while the gas-liquid mass transfer rates for the deionized water with surfactant were 

much lower than those measured for the deionized water. 

Attempts to estimate gas-liquid mass transfer rates for different gas species using 

experimental data, gas-liquid diffusivities, and gas-liquid transport theory did not agree with 

the experimental data collected for carbon monoxide and oxygen for all of the conditions 

studied.  While the gas-liquid transport theory provided an approximation of the measured 

values, the data indicated that this theory did not properly account for all the factors that may 

influence gas-liquid mass transfer (Figure 4.37).  It is believed that these models fail to 

account for differences in gas properties other than diffusivities that might enhance or reduce 
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the ability of a gas molecule from penetrating the bubble liquid film.  It is believe that 

accounting for properties like molecular charge, size, shape, etc. might improve the ability of 

the proposed theoretical models to predict carbon monoxide gas-liquid mass transfer rates 

from oxygen gas-liquid mass transfer data. 

5.2 Recommendations 

As synthesis gas is a mixture of multiple gases, a study should be conducted to assess 

the effect that a mixture of gases may have on gas-liquid mass transfer rates. 

Microbial fermentation systems not only contain water, but nutrients, salts, 

microorganisms, and biological byproducts.  This study considered deionized water and 

deionized water with selected inorganic compounds; however, more work should be 

completed to fully understand the effects of these other solutes on gas-liquid mass transfer 

and system hydrodynamics.   

An investigation into different reactors configurations, including stirrers, different 

geometries, particles, and porous aerator plates, should be performed to determine the best 

possible configuration for maximizing the gas-liquid mass transfer rate. 

Additional work should be completed to understand the complex relationship between 

gas-liquid mass transfer rates for differing gas species so that mass transfer rates may be 

accurately estimated using one of the theoretical models with some sort of adaptation. 

The bioassay used to measure dissolved carbon monoxide concentrations should be 

further improved to increase its sampling rate.  Additionally, an electrode of some sort, 
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similar to a dissolved oxygen electrochemical or optode based electrode, should be 

developed and used in place of the bioassay. 
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APPENDIX A: 

PRESSURE TRANSDUCER DETERMINATION OF FRACTIONAL 

GAS HOLDUP 
 
This appendix shows how the gas holdup is determined using either a pair of pressure 

transducers or a single differential pressure transducer.
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The pressure transducer setup is shown in Figure A.1, points 1 and 2 represent the 

two pressure transducers.  The hydrostatic pressures (cm H2O) recorded by the computer at 

each of the pressure transducers are schematically represented by two liquid manometers in 

Figure A.1 (dashed lines) and describe mathematically as follows: 

1 atm L 1 L rP P g h g h= +ρ Δ +ρ Δ  A.1 

2 atm L 2P P g h= +ρ Δ  A.2 

( )1 2 L 1 2 rP P P g h h hΔ = − = ρ Δ −Δ + Δ  A.3 

where the difference between Δh1 and Δh2 represents the water displaced by the gas bubbles 

in the reactor assuming the gas in the reactor is incompressible and at Patm.  Thus, when gas 

holdup is zero Δh1 and Δh2 are equal and the initial liquid hydrostatic head (ΔPo) is defined 

as: 

o 1o 2o L rP P P g hΔ = − = ρ Δ  A.4 

The mean gas holdup (ε) between points 1 and 2 in the reactor (Figure A.1) may be 

obtained as follows starting with the hydrostatic pressures measured inside the reactor: 

1 atm d d rP P g h g h= +ρ Δ +ρ Δ  A.5 

2 atm dP P g h= +ρ Δ  A.6 

1 2 d rP P P g hΔ = − = ρ Δ  A.7 

where ρd is defined by: 
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( )d L G1ρ = ρ − ε +ρ ε  A.8 

Since ρG << ρL, it is neglected, allowing gas holdup to be expressed as: 

( )L d d

L L
1

ρ −ρ ρ
ε = = −

ρ ρ
 A.9 

Combining equations (A.4), (A.7), and (A.9) 

o

P1
P
Δ

ε = −
Δ

 A.10 

which is the desired equation. 

 
Figure A.1: The pressure transducer setup.  (Note:  The manometers shown are for 

illustrative purposes only and do not actually exist on the real system.) 
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The differential pressure transducer setup is shown in Figure A.2.  The mean gas 

holdup between points 1 and 2 in the reactor (Figure A.2) may be obtained as follows:  

Because the pressure (ΔPr) at the differential pressure transducer is equal to the difference 

between the low and high side pressures, we have: 

( ) ( )r atm d L r atm d d rP P g h g h P g h g hΔ = +ρ Δ +ρ Δ − +ρ Δ +ρ Δ  A.11 

( ) ( )r L r d rP g h g hΔ = ρ Δ − ρ Δ  A.12 

combining equations (A.9) and (A.12) gives 

r

L r

P
g h
Δ

ε =
ρ Δ

 A.13 

or 

r

r

dP
h

ε =
Δ

 A.14 

which is the desired equation where  

r
r

L

PdP
g

Δ
=
ρ

 A.15 
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Figure A.2:  The differential pressure transducer setup. 
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APPENDIX B: 

DIGITAL IMAGES COLLECTED FOR VISUAL OBSERVATIONS 
 

Appendix B contains the digital images collected and used to visually quantify flow 

conditions in the EALR for the open and closed vent modes of operation.  Images are shown 

for two locations along the downcomer.  First, images taken at the upper horizontal connector 

are presented for 0.5 < UG < 20 cm/s for each aerator plate and mode of operation.  Second, 

images taken just above the lower horizontal connector are presented for similar conditions.
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Test Conditions: 
A = 0.62% 
Open Vent Mode 
Upper Horizontal Connector 

   
UG = 0.5 cm/s UG = 0.5 cm/s UG = 0.5 cm/s 

   
UG = 1.0 cm/s UG = 1.0 cm/s UG = 1.0 cm/s 

   
UG = 1.5 cm/s UG = 1.5 cm/s UG = 1.5 cm/s 
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Test Conditions: 
A = 0.62% 
Open Vent Mode 
Upper Horizontal Connector 

   
UG = 2.0 cm/s UG = 2.0 cm/s UG = 2.0 cm/s 

   
UG = 2.5 cm/s UG = 2.5 cm/s UG = 2.5 cm/s 

   
UG = 3.0 cm/s UG = 3.0 cm/s UG = 3.0 cm/s 
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Test Conditions: 
A = 0.62% 
Open Vent Mode 
Upper Horizontal Connector 

   
UG = 3.5 cm/s UG = 3.5 cm/s UG = 3.5 cm/s 

   
UG = 4.0 cm/s UG = 4.0 cm/s UG = 4.0 cm/s 

   
UG = 4.5 cm/s UG = 4.5 cm/s UG = 4.5 cm/s 
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Test Conditions: 
A = 0.62% 
Open Vent Mode 
Upper Horizontal Connector 

   
UG = 5.0 cm/s UG = 5.0 cm/s UG = 5.0 cm/s 

   
UG = 6.0 cm/s UG = 6.0 cm/s UG = 6.0 cm/s 

   
UG = 7.0 cm/s UG = 7.0 cm/s UG = 7.0 cm/s 
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Test Conditions: 
A = 0.62% 
Open Vent Mode 
Upper Horizontal Connector 

   
UG = 8.0 cm/s UG = 8.0 cm/s UG = 8.0 cm/s 

   
UG = 9.0 cm/s UG = 9.0 cm/s UG = 9.0 cm/s 

   
UG = 10.0 cm/s UG = 10.0 cm/s UG = 10.0 cm/s 
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Test Conditions: 
A = 0.62% 
Open Vent Mode 
Upper Horizontal Connector 

   
UG = 11.0 cm/s UG = 11.0 cm/s UG = 11.0 cm/s 

   
UG = 12.0 cm/s UG = 12.0 cm/s UG = 12.0 cm/s 

   
UG = 13.0 cm/s UG = 13.0 cm/s UG = 13.0 cm/s 
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Test Conditions: 
A = 0.62% 
Open Vent Mode 
Upper Horizontal Connector 

   
UG = 14.0 cm/s UG = 14.0 cm/s UG = 14.0 cm/s 

   
UG = 15.0 cm/s UG = 15.0 cm/s UG = 15.0 cm/s 

   
UG = 16.0 cm/s UG = 16.0 cm/s UG = 16.0 cm/s 
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Test Conditions: 
A = 0.62% 
Open Vent Mode 
Upper Horizontal Connector 

   
UG = 17.0 cm/s UG = 17.0 cm/s UG = 17.0 cm/s 

   
UG = 18.0 cm/s UG = 18.0 cm/s UG = 18.0 cm/s 

   
UG = 19.0 cm/s UG = 19.0 cm/s UG = 19.0 cm/s 
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Test Conditions: 
A = 0.62% 
Open Vent Mode 
Upper Horizontal Connector 

   
UG = 20.0 cm/s UG = 20.0 cm/s UG = 20.0 cm/s 
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Test Conditions: 
A = 0.62% 
Closed Vent Mode 
Upper Horizontal Connector 

   
UG = 0.5 cm/s UG = 0.5 cm/s UG = 0.5 cm/s 

   
UG = 1.0 cm/s UG = 1.0 cm/s UG = 1.0 cm/s 

   
UG = 1.5 cm/s UG = 1.5 cm/s UG = 1.5 cm/s 



www.manaraa.com

 227
Test Conditions: 
A = 0.62% 
Closed Vent Mode 
Upper Horizontal Connector 

   
UG = 2.0 cm/s UG = 2.0 cm/s UG = 2.0 cm/s 

   
UG = 2.5 cm/s UG = 2.5 cm/s UG = 2.5 cm/s 

   
UG = 3.0 cm/s UG = 3.0 cm/s UG = 3.0 cm/s 
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Test Conditions: 
A = 0.62% 
Closed Vent Mode 
Upper Horizontal Connector 

   
UG = 3.5 cm/s UG = 3.5 cm/s UG = 3.5 cm/s 

   
UG = 4.0 cm/s UG = 4.0 cm/s UG = 4.0 cm/s 

   
UG = 4.5 cm/s UG = 4.5 cm/s UG = 4.5 cm/s 
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Test Conditions: 
A = 0.62% 
Closed Vent Mode 
Upper Horizontal Connector 

   
UG = 5.0 cm/s UG = 5.0 cm/s UG = 5.0 cm/s 

   
UG = 6.0 cm/s UG = 6.0 cm/s UG = 6.0 cm/s 

   
UG = 7.0 cm/s UG = 7.0 cm/s UG = 7.0 cm/s 
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Test Conditions: 
A = 0.62% 
Closed Vent Mode 
Upper Horizontal Connector 

   
UG = 8.0 cm/s UG = 8.0 cm/s UG = 8.0 cm/s 

   
UG = 9.0 cm/s UG = 9.0 cm/s UG = 9.0 cm/s 

   
UG = 10.0 cm/s UG = 10.0 cm/s UG = 10.0 cm/s 
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Test Conditions: 
A = 0.62% 
Closed Vent Mode 
Upper Horizontal Connector 

   
UG = 11.0 cm/s UG = 11.0 cm/s UG = 11.0 cm/s 

   
UG = 12.0 cm/s UG = 12.0 cm/s UG = 12.0 cm/s 

   
UG = 13.0 cm/s UG = 13.0 cm/s UG = 13.0 cm/s 
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Test Conditions: 
A = 0.62% 
Closed Vent Mode 
Upper Horizontal Connector 

   
UG = 14.0 cm/s UG = 14.0 cm/s UG = 14.0 cm/s 

   
UG = 15.0 cm/s UG = 15.0 cm/s UG = 15.0 cm/s 

   
UG = 16.0 cm/s UG = 16.0 cm/s UG = 16.0 cm/s 
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Test Conditions: 
A = 0.62% 
Closed Vent Mode 
Upper Horizontal Connector 

   
UG = 17.0 cm/s UG = 17.0 cm/s UG = 17.0 cm/s 

   
UG = 18.0 cm/s UG = 18.0 cm/s UG = 18.0 cm/s 

   
UG = 19.0 cm/s UG = 19.0 cm/s UG = 19.0 cm/s 
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Test Conditions: 
A = 0.62% 
Closed Vent Mode 
Upper Horizontal Connector 

   
UG = 20.0 cm/s UG = 20.0 cm/s UG = 20.0 cm/s 
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Test Conditions: 
A = 0.99% 
Open Vent Mode 
Upper Horizontal Connector 

   
UG = 0.5 cm/s UG = 0.5 cm/s UG = 0.5 cm/s 

   
UG = 1.0 cm/s UG = 1.0 cm/s UG = 1.0 cm/s 

   
UG = 1.5 cm/s UG = 1.5 cm/s UG = 1.5 cm/s 
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Test Conditions: 
A = 0.99% 
Open Vent Mode 
Upper Horizontal Connector 

   
UG = 2.0 cm/s UG = 2.0 cm/s UG = 2.0 cm/s 

   
UG = 2.5 cm/s UG = 2.5 cm/s UG = 2.5 cm/s 

   
UG = 3.0 cm/s UG = 3.0 cm/s UG = 3.0 cm/s 
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Test Conditions: 
A = 0.99% 
Open Vent Mode 
Upper Horizontal Connector 

   
UG = 3.5 cm/s UG = 3.5 cm/s UG = 3.5 cm/s 

   
UG = 4.0 cm/s UG = 4.0 cm/s UG = 4.0 cm/s 

   
UG = 4.5 cm/s UG = 4.5 cm/s UG = 4.5 cm/s 
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Test Conditions: 
A = 0.99% 
Open Vent Mode 
Upper Horizontal Connector 

   
UG = 5.0 cm/s UG = 5.0 cm/s UG = 5.0 cm/s 

   
UG = 6.0 cm/s UG = 6.0 cm/s UG = 6.0 cm/s 

   
UG = 7.0 cm/s UG = 7.0 cm/s UG = 7.0 cm/s 
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Test Conditions: 
A = 0.99% 
Open Vent Mode 
Upper Horizontal Connector 

   
UG = 8.0 cm/s UG = 8.0 cm/s UG = 8.0 cm/s 

   
UG = 9.0 cm/s UG = 9.0 cm/s UG = 9.0 cm/s 

   
UG = 10.0 cm/s UG = 10.0 cm/s UG = 10.0 cm/s 
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Test Conditions: 
A = 0.99% 
Open Vent Mode 
Upper Horizontal Connector 

   
UG = 11.0 cm/s UG = 11.0 cm/s UG = 11.0 cm/s 

   
UG = 12.0 cm/s UG = 12.0 cm/s UG = 12.0 cm/s 

   
UG = 13.0 cm/s UG = 13.0 cm/s UG = 13.0 cm/s 
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Test Conditions: 
A = 0.99% 
Open Vent Mode 
Upper Horizontal Connector 

   
UG = 14.0 cm/s UG = 14.0 cm/s UG = 14.0 cm/s 

   
UG = 15.0 cm/s UG = 15.0 cm/s UG = 15.0 cm/s 

   
UG = 16.0 cm/s UG = 16.0 cm/s UG = 16.0 cm/s 
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Test Conditions: 
A = 0.99% 
Open Vent Mode 
Upper Horizontal Connector 

   
UG = 17.0 cm/s UG = 17.0 cm/s UG = 17.0 cm/s 

   
UG = 18.0 cm/s UG = 18.0 cm/s UG = 18.0 cm/s 

   
UG = 19.0 cm/s UG = 19.0 cm/s UG = 19.0 cm/s 
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Test Conditions: 
A = 0.99% 
Open Vent Mode 
Upper Horizontal Connector 

   
UG = 20.0 cm/s UG = 20.0 cm/s UG = 20.0 cm/s 
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Test Conditions: 
A = 0.99% 
Closed Vent Mode 
Upper Horizontal Connector 

   
UG = 0.5 cm/s UG = 0.5 cm/s UG = 0.5 cm/s 

   
UG = 1.0 cm/s UG = 1.0 cm/s UG = 1.0 cm/s 

   
UG = 1.5 cm/s UG = 1.5 cm/s UG = 1.5 cm/s 
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Test Conditions: 
A = 0.99% 
Closed Vent Mode 
Upper Horizontal Connector 

   
UG = 2.0 cm/s UG = 2.0 cm/s UG = 2.0 cm/s 

   
UG = 2.5 cm/s UG = 2.5 cm/s UG = 2.5 cm/s 

   
UG = 3.0 cm/s UG = 3.0 cm/s UG = 3.0 cm/s 
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Test Conditions: 
A = 0.99% 
Closed Vent Mode 
Upper Horizontal Connector 

   
UG = 3.5 cm/s UG = 3.5 cm/s UG = 3.5 cm/s 

   
UG = 4.0 cm/s UG = 4.0 cm/s UG = 4.0 cm/s 

   
UG = 4.5 cm/s UG = 4.5 cm/s UG = 4.5 cm/s 
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Test Conditions: 
A = 0.99% 
Closed Vent Mode 
Upper Horizontal Connector 

   
UG = 5.0 cm/s UG = 5.0 cm/s UG = 5.0 cm/s 

   
UG = 6.0 cm/s UG = 6.0 cm/s UG = 6.0 cm/s 

   
UG = 7.0 cm/s UG = 7.0 cm/s UG = 7.0 cm/s 
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Test Conditions: 
A = 0.99% 
Closed Vent Mode 
Upper Horizontal Connector 

   
UG = 8.0 cm/s UG = 8.0 cm/s UG = 8.0 cm/s 

   
UG = 9.0 cm/s UG = 9.0 cm/s UG = 9.0 cm/s 

   
UG = 10.0 cm/s UG = 10.0 cm/s UG = 10.0 cm/s 
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Test Conditions: 
A = 0.99% 
Closed Vent Mode 
Upper Horizontal Connector 

   
UG = 11.0 cm/s UG = 11.0 cm/s UG = 11.0 cm/s 

   
UG = 12.0 cm/s UG = 12.0 cm/s UG = 12.0 cm/s 

   
UG = 13.0 cm/s UG = 13.0 cm/s UG = 13.0 cm/s 
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Test Conditions: 
A = 0.99% 
Closed Vent Mode 
Upper Horizontal Connector 

   
UG = 14.0 cm/s UG = 14.0 cm/s UG = 14.0 cm/s 

   
UG = 15.0 cm/s UG = 15.0 cm/s UG = 15.0 cm/s 

   
UG = 16.0 cm/s UG = 16.0 cm/s UG = 16.0 cm/s 
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Test Conditions: 
A = 0.99% 
Closed Vent Mode 
Upper Horizontal Connector 

   
UG = 17.0 cm/s UG = 17.0 cm/s UG = 17.0 cm/s 

   
UG = 18.0 cm/s UG = 18.0 cm/s UG = 18.0 cm/s 

   
UG = 19.0 cm/s UG = 19.0 cm/s UG = 19.0 cm/s 
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Test Conditions: 
A = 0.99% 
Closed Vent Mode 
Upper Horizontal Connector 

   
UG = 20.0 cm/s UG = 20.0 cm/s UG = 20.0 cm/s 
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Test Conditions: 
A = 2.22% 
Open Vent Mode 
Upper Horizontal Connector 

   
UG = 0.5 cm/s UG = 0.5 cm/s UG = 0.5 cm/s 

   
UG = 1.0 cm/s UG = 1.0 cm/s UG = 1.0 cm/s 

   
UG = 1.5 cm/s UG = 1.5 cm/s UG = 1.5 cm/s 
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Test Conditions: 
A = 2.22% 
Open Vent Mode 
Upper Horizontal Connector 

   
UG = 2.0 cm/s UG = 2.0 cm/s UG = 2.0 cm/s 

   
UG = 2.5 cm/s UG = 2.5 cm/s UG = 2.5 cm/s 

   
UG = 3.0 cm/s UG = 3.0 cm/s UG = 3.0 cm/s 
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Test Conditions: 
A = 2.22% 
Open Vent Mode 
Upper Horizontal Connector 

   
UG = 3.5 cm/s UG = 3.5 cm/s UG = 3.5 cm/s 

   
UG = 4.0 cm/s UG = 4.0 cm/s UG = 4.0 cm/s 

   
UG = 4.5 cm/s UG = 4.5 cm/s UG = 4.5 cm/s 
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Test Conditions: 
A = 2.22% 
Open Vent Mode 
Upper Horizontal Connector 

   
UG = 5.0 cm/s UG = 5.0 cm/s UG = 5.0 cm/s 

   
UG = 6.0 cm/s UG = 6.0 cm/s UG = 6.0 cm/s 

   
UG = 7.0 cm/s UG = 7.0 cm/s UG = 7.0 cm/s 
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Test Conditions: 
A = 2.22% 
Open Vent Mode 
Upper Horizontal Connector 

   
UG = 8.0 cm/s UG = 8.0 cm/s UG = 8.0 cm/s 

   
UG = 9.0 cm/s UG = 9.0 cm/s UG = 9.0 cm/s 

   
UG = 10.0 cm/s UG = 10.0 cm/s UG = 10.0 cm/s 
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Test Conditions: 
A = 2.22% 
Open Vent Mode 
Upper Horizontal Connector 

   
UG = 11.0 cm/s UG = 11.0 cm/s UG = 11.0 cm/s 

   
UG = 12.0 cm/s UG = 12.0 cm/s UG = 12.0 cm/s 

   
UG = 13.0 cm/s UG = 13.0 cm/s UG = 13.0 cm/s 
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Test Conditions: 
A = 2.22% 
Open Vent Mode 
Upper Horizontal Connector 

   
UG = 14.0 cm/s UG = 14.0 cm/s UG = 14.0 cm/s 

   
UG = 15.0 cm/s UG = 15.0 cm/s UG = 15.0 cm/s 

   
UG = 16.0 cm/s UG = 16.0 cm/s UG = 16.0 cm/s 
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Test Conditions: 
A = 2.22% 
Open Vent Mode 
Upper Horizontal Connector 

   
UG = 17.0 cm/s UG = 17.0 cm/s UG = 17.0 cm/s 

   
UG = 18.0 cm/s UG = 18.0 cm/s UG = 18.0 cm/s 

   
UG = 19.0 cm/s UG = 19.0 cm/s UG = 19.0 cm/s 
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Test Conditions: 
A = 2.22% 
Open Vent Mode 
Upper Horizontal Connector 

   
UG = 20.0 cm/s UG = 20.0 cm/s UG = 20.0 cm/s 
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Test Conditions: 
A = 2.22% 
Closed Vent Mode 
Upper Horizontal Connector 

   
UG = 0.5 cm/s UG = 0.5 cm/s UG = 0.5 cm/s 

   
UG = 1.0 cm/s UG = 1.0 cm/s UG = 1.0 cm/s 

   
UG = 1.5 cm/s UG = 1.5 cm/s UG = 1.5 cm/s 
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Test Conditions: 
A = 2.22% 
Closed Vent Mode 
Upper Horizontal Connector 

   
UG = 2.0 cm/s UG = 2.0 cm/s UG = 2.0 cm/s 

   
UG = 2.5 cm/s UG = 2.5 cm/s UG = 2.5 cm/s 

   
UG = 3.0 cm/s UG = 3.0 cm/s UG = 3.0 cm/s 
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Test Conditions: 
A = 2.22% 
Closed Vent Mode 
Upper Horizontal Connector 

   
UG = 3.5 cm/s UG = 3.5 cm/s UG = 3.5 cm/s 

   
UG = 4.0 cm/s UG = 4.0 cm/s UG = 4.0 cm/s 

   
UG = 4.5 cm/s UG = 4.5 cm/s UG = 4.5 cm/s 
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Test Conditions: 
A = 2.22% 
Closed Vent Mode 
Upper Horizontal Connector 

   
UG = 5.0 cm/s UG = 5.0 cm/s UG = 5.0 cm/s 

   
UG = 6.0 cm/s UG = 6.0 cm/s UG = 6.0 cm/s 

   
UG = 7.0 cm/s UG = 7.0 cm/s UG = 7.0 cm/s 
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Test Conditions: 
A = 2.22% 
Closed Vent Mode 
Upper Horizontal Connector 

   
UG = 8.0 cm/s UG = 8.0 cm/s UG = 8.0 cm/s 

   
UG = 9.0 cm/s UG = 9.0 cm/s UG = 9.0 cm/s 

   
UG = 10.0 cm/s UG = 10.0 cm/s UG = 10.0 cm/s 
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Test Conditions: 
A = 2.22% 
Closed Vent Mode 
Upper Horizontal Connector 

   
UG = 11.0 cm/s UG = 11.0 cm/s UG = 11.0 cm/s 

   
UG = 12.0 cm/s UG = 12.0 cm/s UG = 12.0 cm/s 

   
UG = 13.0 cm/s UG = 13.0 cm/s UG = 13.0 cm/s 
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Test Conditions: 
A = 2.22% 
Closed Vent Mode 
Upper Horizontal Connector 

   
UG = 14.0 cm/s UG = 14.0 cm/s UG = 14.0 cm/s 

   
UG = 15.0 cm/s UG = 15.0 cm/s UG = 15.0 cm/s 

   
UG = 16.0 cm/s UG = 16.0 cm/s UG = 16.0 cm/s 
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Test Conditions: 
A = 2.22% 
Closed Vent Mode 
Upper Horizontal Connector 

   
UG = 17.0 cm/s UG = 17.0 cm/s UG = 17.0 cm/s 

   
UG = 18.0 cm/s UG = 18.0 cm/s UG = 18.0 cm/s 

   
UG = 19.0 cm/s UG = 19.0 cm/s UG = 19.0 cm/s 
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Test Conditions: 
A = 2.22% 
Closed Vent Mode 
Upper Horizontal Connector 

   
UG = 20.0 cm/s UG = 20.0 cm/s UG = 20.0 cm/s 
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Test Conditions: 
A = 0.62% 
Open Vent Mode 
Lower Horizontal Connector 

   
UG = 0.5 cm/s UG = 1.0 cm/s UG = 1.5 cm/s 

   
UG = 2.0 cm/s UG = 2.5 cm/s UG = 3.0 cm/s 

   
UG = 3.5 cm/s UG = 4.0 cm/s UG = 4.5 cm/s 
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Test Conditions: 
A = 0.62% 
Open Vent Mode 
Lower Horizontal Connector 

   
UG = 5.0 cm/s UG = 6.0 cm/s UG = 7.0 cm/s 

   
UG = 8.0 cm/s UG = 9.0 cm/s UG = 10.0 cm/s 

   
UG = 11.0 cm/s UG = 12.0 cm/s UG = 13.0 cm/s 
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Test Conditions: 
A = 0.62% 
Open Vent Mode 
Lower Horizontal Connector 

   
UG = 14.0 cm/s UG = 15.0 cm/s UG = 16.0 cm/s 

   
UG = 17.0 cm/s UG = 18.0 cm/s UG = 19.0 cm/s 
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Test Conditions: 
A = 0.62% 
Closed Vent Mode 
Lower Horizontal Connector 

   
UG = 0.5 cm/s UG = 1.0 cm/s UG = 1.5 cm/s 

   
UG = 2.0 cm/s UG = 2.5 cm/s UG = 3.0 cm/s 

   
UG = 3.5 cm/s UG = 4.0 cm/s UG = 4.5 cm/s 
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Test Conditions: 
A = 0.62% 
Closed Vent Mode 
Lower Horizontal Connector 

   
UG = 5.0 cm/s UG = 6.0 cm/s UG = 7.0 cm/s 

   
UG = 8.0 cm/s UG = 9.0 cm/s UG = 10.0 cm/s 

   
UG = 11.0 cm/s UG = 12.0 cm/s UG = 13.0 cm/s 
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Test Conditions: 
A = 0.62% 
Closed Vent Mode 
Lower Horizontal Connector 

   
UG = 14.0 cm/s UG = 15.0 cm/s UG = 16.0 cm/s 

   
UG = 17.0 cm/s UG = 18.0 cm/s UG = 19.0 cm/s 
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Test Conditions: 
A = 0.99% 
Open Vent Mode 
Lower Horizontal Connector 

   
UG = 0.5 cm/s UG = 1.0 cm/s UG = 1.5 cm/s 

   
UG = 2.0 cm/s UG = 2.5 cm/s UG = 3.0 cm/s 

   
UG = 3.5 cm/s UG = 4.0 cm/s UG = 4.5 cm/s 
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Test Conditions: 
A = 0.99% 
Open Vent Mode 
Lower Horizontal Connector 

   
UG = 5.0 cm/s UG = 6.0 cm/s UG = 7.0 cm/s 

   
UG = 8.0 cm/s UG = 9.0 cm/s UG = 10.0 cm/s 

   
UG = 11.0 cm/s UG = 12.0 cm/s UG = 13.0 cm/s 



www.manaraa.com

 279
Test Conditions: 
A = 0.99% 
Open Vent Mode 
Lower Horizontal Connector 

   
UG = 14.0 cm/s UG = 15.0 cm/s UG = 16.0 cm/s 

   
UG = 17.0 cm/s UG = 18.0 cm/s UG = 19.0 cm/s 
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Test Conditions: 
A = 0.99% 
Closed Vent Mode 
Lower Horizontal Connector 

   
UG = 0.5 cm/s UG = 1.0 cm/s UG = 1.5 cm/s 

   
UG = 2.0 cm/s UG = 2.5 cm/s UG = 3.0 cm/s 

   
UG = 3.5 cm/s UG = 4.0 cm/s UG = 4.5 cm/s 
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Test Conditions: 
A = 0.99% 
Closed Vent Mode 
Lower Horizontal Connector 

   
UG = 5.0 cm/s UG = 6.0 cm/s UG = 7.0 cm/s 

   
UG = 8.0 cm/s UG = 9.0 cm/s UG = 10.0 cm/s 

   
UG = 11.0 cm/s UG = 12.0 cm/s UG = 13.0 cm/s 
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Test Conditions: 
A = 0.99% 
Closed Vent Mode 
Lower Horizontal Connector 

   
UG = 14.0 cm/s UG = 15.0 cm/s UG = 16.0 cm/s 

   
UG = 17.0 cm/s UG = 18.0 cm/s UG = 19.0 cm/s 
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Test Conditions: 
A = 2.22% 
Open Vent Mode 
Lower Horizontal Connector 

   
UG = 0.5 cm/s UG = 1.0 cm/s UG = 1.5 cm/s 

   
UG = 2.0 cm/s UG = 2.5 cm/s UG = 3.0 cm/s 

   
UG = 3.5 cm/s UG = 4.0 cm/s UG = 4.5 cm/s 
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Test Conditions: 
A = 2.22% 
Open Vent Mode 
Lower Horizontal Connector 

   
UG = 5.0 cm/s UG = 6.0 cm/s UG = 7.0 cm/s 

   
UG = 8.0 cm/s UG = 9.0 cm/s UG = 10.0 cm/s 

   
UG = 11.0 cm/s UG = 12.0 cm/s UG = 13.0 cm/s 
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Test Conditions: 
A = 2.22% 
Open Vent Mode 
Lower Horizontal Connector 

   
UG = 14.0 cm/s UG = 15.0 cm/s UG = 16.0 cm/s 

   
UG = 17.0 cm/s UG = 18.0 cm/s UG = 19.0 cm/s 
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Test Conditions: 
A = 2.22% 
Closed Vent Mode 
Lower Horizontal Connector 

   
UG = 0.5 cm/s UG = 1.0 cm/s UG = 1.5 cm/s 

   
UG = 2.0 cm/s UG = 2.5 cm/s UG = 3.0 cm/s 

   
UG = 3.5 cm/s UG = 4.0 cm/s UG = 4.5 cm/s 



www.manaraa.com

 287
Test Conditions: 
A = 2.22% 
Closed Vent Mode 
Lower Horizontal Connector 

   
UG = 5.0 cm/s UG = 6.0 cm/s UG = 7.0 cm/s 

   
UG = 8.0 cm/s UG = 9.0 cm/s UG = 10.0 cm/s 

   
UG = 11.0 cm/s UG = 12.0 cm/s UG = 13.0 cm/s 
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Test Conditions: 
A = 2.22% 
Closed Vent Mode 
Lower Horizontal Connector 

   
UG = 14.0 cm/s UG = 15.0 cm/s UG = 16.0 cm/s 

   
UG = 17.0 cm/s UG = 18.0 cm/s UG = 19.0 cm/s 
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APPENDIX C: 

HYDRODYNAMIC DATA 

 

Appendix C contains a summary of the EALR hydrodynamic data collected during 

this study.  Included in these tables are the superficial gas velocity, riser and downcomer 

(where applicable) gas holdup, downcomer linear liquid velocity, and calculated riser 

superficial liquid velocity data.  The data is first presented for the tap water condition 

followed by the deionized water, potassium chloride solution, and nitrosomonas solution 

conditions. 
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APPENDIX D: 

GAS-LIQUID MASS TRANSFER DATA 

 

Appendix D contains a summary of the EALR oxygen and carbon monoxide gas-

liquid mass transfer data collected during this study.  Included in these tables are the oxygen 

gas-liquid mass transfer rate data measured when the liquid phase in the EALR was sparged 

with air, carbon monoxide, and nitrogen using the extended dynamic gassing out method and 

carbon monoxide gas-liquid mass transfer rate data measured when the liquid phase was 

sparged with air and carbon monoxide using the basic dynamic gassing out method.  The data 

is first presented for the deionized water condition followed by the potassium chloride 

solution, the nitrosomonas solution, and the deionized water with surfactant conditions. 
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Test Conditions:
DI Water Open Vent Mode
A = 0.62% UG = 0.5 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 0.51 19.9 0.0071 98.8 -2.0 4.37
#2 Nitrogen 0.57 20.2 0.0084 99.4 -0.9 3.00
#3 Nitrogen 0.55 20.1 0.0077 99.2 -1.3 4.86
#1 Air 0.54 20.1 0.0083 0.5 101.0 2.53
#2 Air 0.52 20.3 0.0079 0.4 101.0 2.36
#3 Air 0.55 20.1 0.0076 0.3 101.2 1.75
#1 Carbon Monoxide 0.51 20.2 0.0072 99.3 -1.9 4.77
#2 Carbon Monoxide 0.51 20.4 0.0076 99.3 -1.4 4.31
#3 Carbon Monoxide 0.54 20.3 0.0078 99.0 -1.3 4.25
#1 Air 0.54 20.3 0.0084 0.7 101.4 1.77
#2 Air 0.52 20.5 0.0079 0.5 101.1 2.43
#3 Air 0.50 20.4 0.0077 0.7 101.2 2.34

0.53 20.2 0.0078 - - 3.23

Test Conditions:
DI Water Open Vent Mode
A = 0.62% UG = 2.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 2.02 20.6 0.0252 99.9 0.0 2.46
#2 Nitrogen 2.04 19.9 0.0257 99.3 0.0 2.25
#3 Nitrogen 2.08 19.3 0.0253 99.9 0.0 2.63
#1 Air 2.01 20.7 0.0255 0.6 99.9 1.84
#2 Air 2.02 19.9 0.0258 0.5 99.9 1.79
#3 Air 2.08 19.3 0.0263 -0.1 100.3 2.82
#1 Carbon Monoxide 2.00 20.7 0.0249 100.0 -0.1 2.50
#2 Carbon Monoxide 2.06 20.0 0.0260 99.5 0.0 2.03
#3 Carbon Monoxide 2.08 19.5 0.0252 99.6 0.0 2.44
#1 Air 2.01 20.8 0.0252 0.4 100.0 2.06
#2 Air 2.01 20.1 0.0256 -0.4 99.9 1.67
#3 Air 2.03 19.6 0.0264 0.4 100.4 2.55

2.04 20.0 0.0256 - - 2.25

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 2.00 20.7 0.0230 0.0 100.9
#2 2.06 20.0 0.0253 0.0 99.0
#3 2.08 19.5 0.0274 0.0 98.9

2.05 20.1 0.0252 - -

Oxygen Mass Transfer Data

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Test Inlet Gas

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide
Carbon Monoxide
Carbon Monoxide

Average
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Test Conditions:
DI Water Open Vent Mode
A = 0.62% UG = 4.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 4.00 19.9 0.0553 100.0 0.0 2.61
#2 Nitrogen 4.06 20.0 0.0571 99.3 0.1 2.37
#3 Nitrogen 3.99 20.1 0.0576 99.2 0.0 3.18
#1 Air 3.99 20.0 0.0567 0.2 99.9 3.29
#2 Air 4.00 19.9 0.0583 1.1 99.9 2.33
#3 Air 3.99 20.1 0.0571 0.9 99.8 2.50
#1 Carbon Monoxide 4.00 20.1 0.0569 99.3 0.1 2.87
#2 Carbon Monoxide 3.99 20.0 0.0578 99.7 0.1 2.39
#3 Carbon Monoxide 4.06 20.1 0.0570 98.9 0.0 2.55
#1 Air 3.99 20.1 0.0560 0.8 99.9 2.32
#2 Air 4.00 20.1 0.0584 0.7 100.1 2.55
#3 Air 4.05 20.1 0.0575 0.3 99.9 2.69

4.01 20.0 0.0571 - - 2.64

Test Conditions:
DI Water Open Vent Mode
A = 0.62% UG = 6.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 6.06 20.1 0.0837 99.8 0.2 2.96
#2 Nitrogen 6.01 19.9 0.0865 101.1 0.2 4.47
#3 Nitrogen 6.03 20.3 0.0868 100.8 0.1 3.22
#1 Air 6.03 20.2 0.0861 0.4 100.1 3.06
#2 Air 5.99 19.9 0.0867 0.6 100.0 3.19
#3 Air 6.03 20.3 0.0929 0.7 100.5 3.09
#1 Carbon Monoxide 6.05 20.2 0.0833 100.1 0.1 3.10
#2 Carbon Monoxide 6.00 20.0 - 104.9 0.3 8.55
#3 Carbon Monoxide 6.01 20.4 0.0887 99.6 0.1 3.72
#1 Air 6.04 20.3 0.0865 -0.2 99.9 3.19
#2 Air 6.00 20.0 0.0868 0.6 100.4 2.95
#3 Air 6.02 20.5 0.0892 -0.7 100.2 3.09

6.02 20.2 0.0870 - - 3.72

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 6.05 20.2 0.0774 0.0 102.1
#2 6.00 20.0 0.0898 0.0 98.8
#3 6.01 20.4 0.0788 0.0 102.8

6.02 20.2 0.0820 - -

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide
Carbon Monoxide
Carbon Monoxide

Average
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Test Conditions:
DI Water Open Vent Mode
A = 0.62% UG = 8.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 8.07 20.2 0.1119 100.6 0.2 3.78
#2 Nitrogen 8.09 19.8 0.1085 99.9 0.2 3.11
#3 Nitrogen 8.08 20.2 0.1067 100.0 0.1 2.88
#1 Air 8.08 20.2 0.1080 0.4 100.1 2.90
#2 Air 8.06 19.8 0.1083 0.7 100.0 2.58
#3 Air 8.08 20.2 0.1067 0.4 99.9 2.65
#1 Carbon Monoxide 8.05 20.2 0.1075 99.7 0.1 3.58
#2 Carbon Monoxide 8.08 19.8 0.1093 99.4 0.1 3.07
#3 Carbon Monoxide 8.08 20.3 0.1066 99.4 0.1 2.61
#1 Air 8.09 20.3 0.1068 -0.5 99.8 3.07
#2 Air 8.05 19.9 0.1089 1.9 100.0 2.51
#3 Air 8.06 20.3 0.1114 -0.8 100.0 3.22

8.07 20.1 0.1084 - - 3.00

Test Conditions:
DI Water Open Vent Mode
A = 0.62% UG = 10.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 9.99 20.0 0.1356 101.2 0.2 3.71
#2 Nitrogen 10.05 20.0 0.1252 99.3 0.1 2.58
#3 Nitrogen 9.92 20.3 0.1254 99.6 0.2 2.94
#1 Air 10.16 20.1 0.1233 1.1 99.9 2.33
#2 Air 10.03 19.9 0.1233 0.0 100.0 2.32
#3 Air 9.92 20.3 0.1323 1.3 100.5 3.05
#1 Carbon Monoxide 10.00 20.1 0.1229 99.8 0.1 2.83
#2 Carbon Monoxide 9.99 19.9 0.1283 99.5 0.1 3.15
#3 Carbon Monoxide 10.06 20.4 0.1275 99.8 0.1 3.05
#1 Air 10.16 20.1 0.1190 0.0 99.9 2.08
#2 Air 10.03 19.9 0.1229 -1.3 99.7 2.68
#3 Air 10.06 20.4 0.1357 -0.4 100.1 3.10

10.03 20.1 0.1268 - - 2.82

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 10.00 20.1 0.1304 0.0 98.8
#2 9.99 19.9 0.1217 0.0 98.7
#3 10.06 20.4 0.1213 0.0 95.9

10.01 20.1 0.1244 - -

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide
Carbon Monoxide

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
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Test Conditions:
DI Water Open Vent Mode
A = 0.62% UG = 12.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 12.00 19.7 0.1164 99.0 0.3 2.30
#2 Nitrogen 12.02 19.9 0.1187 100.6 0.2 2.77
#3 Nitrogen 12.02 20.5 0.1319 101.1 0.2 2.35
#1 Air 12.03 19.7 0.1140 1.0 100.2 1.90
#2 Air 12.07 19.9 0.1315 0.6 100.1 3.32
#3 Air 12.02 20.5 0.1272 0.7 100.1 2.43
#1 Carbon Monoxide 12.02 19.7 0.1168 99.6 0.2 2.68
#2 Carbon Monoxide 12.05 19.9 0.1278 100.8 0.2 3.70
#3 Carbon Monoxide 12.03 20.5 0.1311 98.7 0.2 2.25
#1 Air 12.03 19.7 0.1157 -0.2 100.2 2.11
#2 Air 12.05 19.9 0.1279 -0.3 100.1 2.71
#3 Air 12.09 20.5 0.1350 0.3 99.9 2.47

12.04 20.0 0.1245 - - 2.58

Test Conditions:
DI Water Open Vent Mode
A = 0.62% UG = 14.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 14.01 20.3 0.1126 100.1 0.1 2.50
#2 Nitrogen 14.12 19.6 0.1202 100.5 0.2 2.69
#3 Nitrogen 14.05 20.2 0.1231 100.2 0.2 2.45
#1 Air 14.08 20.3 0.1182 0.4 99.8 2.24
#2 Air 14.07 19.6 0.1185 0.1 99.8 1.66
#3 Air 14.05 20.2 0.1197 0.2 100.0 1.86
#1 Carbon Monoxide 14.06 20.2 0.1184 99.5 0.1 3.08
#2 Carbon Monoxide 14.16 19.6 0.1171 100.1 0.1 2.24
#3 Carbon Monoxide 14.04 20.2 0.1173 100.4 0.1 2.23
#1 Air 14.01 20.2 0.1191 -0.4 100.1 2.67
#2 Air 14.08 19.6 0.1222 0.0 99.6 2.29
#3 Air 14.10 20.2 0.1189 0.3 100.0 2.16

14.07 20.0 0.1188 - - 2.34

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 14.06 20.2 0.1272 0.0 100.2
#2 14.16 19.6 0.1098 0.0 100.5
#3 14.04 20.2 0.1219 0.0 99.3

14.09 20.0 0.1196 - -

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide
Carbon Monoxide

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide
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Test Conditions:
DI Water Open Vent Mode
A = 0.62% UG = 16.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 16.04 20.2 0.1213 99.6 0.1 2.79
#2 Nitrogen 16.09 20.1 0.1265 98.8 0.2 3.27
#3 Nitrogen 16.06 20.3 0.1237 99.8 0.1 2.51
#1 Air 16.10 20.2 0.1276 0.0 99.9 3.00
#2 Air 16.27 20.1 0.1166 1.1 99.9 1.87
#3 Air 16.06 20.3 0.1258 0.3 100.3 2.07
#1 Carbon Monoxide 16.08 20.2 0.1204 99.6 0.1 2.85
#2 Carbon Monoxide 16.08 20.1 0.1232 100.1 0.1 2.45
#3 Carbon Monoxide 16.05 20.3 0.1238 100.3 0.1 2.68
#1 Air 16.03 20.2 0.1207 0.2 100.0 2.31
#2 Air 16.00 20.1 0.1195 0.2 100.0 2.18
#3 Air 16.07 20.3 0.1322 0.0 100.2 2.35

16.08 20.2 0.1234 - - 2.53

Test Conditions:
DI Water Open Vent Mode
A = 0.62% UG = 18.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 18.04 20.0 - 99.2 0.1 2.53
#2 Nitrogen 18.08 20.3 0.1256 99.8 0.2 2.61
#3 Nitrogen 18.02 20.2 0.1267 99.2 0.2 2.88
#1 Air 18.08 20.0 0.1102 -0.5 99.8 2.41
#2 Air 18.15 20.3 0.1267 -0.9 99.7 2.17
#3 Air 18.02 20.2 0.1289 -0.7 100.0 2.67
#1 Carbon Monoxide 18.09 20.0 - 100.4 0.1 2.41
#2 Carbon Monoxide 18.06 20.2 0.1264 99.5 0.1 2.59
#3 Carbon Monoxide 18.05 20.1 0.1278 99.4 0.2 2.96
#1 Air 18.11 19.9 - 0.3 100.0 2.01
#2 Air 18.17 20.2 0.1255 1.0 99.8 2.07
#3 Air 18.08 20.1 0.1280 0.7 100.1 2.93

18.08 20.1 0.1251 - - 2.52

Oxygen Mass Transfer Data

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Test Inlet Gas

Average
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Test Conditions:
DI Water Open Vent Mode
A = 0.62% UG = 20.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 20.02 20.5 0.1322 100.6 0.2 3.68
#2 Nitrogen 20.09 20.8 - 99.5 0.1 2.72
#3 Nitrogen 20.03 20.2 0.1314 99.7 0.1 2.56
#1 Air 20.09 20.5 0.1344 0.4 99.9 2.76
#2 Air 20.10 20.8 - 0.0 99.8 2.63
#3 Air 20.03 20.2 0.1379 1.1 100.0 2.43
#1 Carbon Monoxide 20.05 20.5 0.1314 100.8 0.2 3.50
#2 Carbon Monoxide 20.07 20.7 - 101.1 0.2 3.00
#3 Carbon Monoxide 20.04 20.1 0.1354 99.5 0.1 2.65
#1 Air 20.13 20.5 0.1301 0.6 100.2 2.86
#2 Air 20.07 20.6 0.1342 0.2 99.9 2.28
#3 Air 20.14 20.1 - -0.2 100.3 2.72

20.07 20.4 0.1334 - - 2.81

Oxygen Mass Transfer Data

Test Inlet Gas

Average
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Test Conditions:
DI Water Closed Vent Mode
A = 0.62% UG = 0.5 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 0.53 20.2 0.0077 99.3 -1.3 5.81
#2 Nitrogen 0.54 20.4 0.0084 99.6 -0.8 3.09
#3 Nitrogen 0.54 19.6 0.0081 99.5 -1.0 4.15
#1 Air 0.52 20.3 0.0088 0.7 100.8 2.71
#2 Air 0.54 20.5 0.0082 0.5 100.7 2.60
#3 Air 0.50 19.8 0.0080 0.8 101.4 3.14
#1 Carbon Monoxide 0.53 20.4 0.0076 99.2 -1.4 5.62
#2 Carbon Monoxide 0.54 20.6 0.0084 99.3 -0.8 3.46
#3 Carbon Monoxide 0.54 19.9 0.0080 99.4 -1.2 3.00
#1 Air 0.52 20.5 0.0089 1.0 101.0 2.66
#2 Air 0.54 20.7 0.0084 0.3 100.6 2.05
#3 Air 0.50 20.0 0.0089 1.0 101.7 5.67

0.53 20.2 0.0083 - - 3.66

Test Conditions:
DI Water Closed Vent Mode
A = 0.62% UG = 2.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 2.06 20.0 0.0275 100.0 0.2 2.29
#2 Nitrogen 2.02 19.5 0.0289 99.9 0.3 2.36
#3 Nitrogen 2.03 19.6 0.0277 99.6 0.1 3.73
#1 Air 2.07 20.1 0.0286 -0.3 99.6 1.95
#2 Air 2.02 19.6 0.0298 0.0 100.3 2.49
#3 Air 2.01 19.7 - 4.9 103.9 0.00
#1 Carbon Monoxide 2.04 20.1 0.0276 100.2 0.2 2.76
#2 Carbon Monoxide 2.04 19.6 0.0300 99.6 0.1 2.51
#3 Carbon Monoxide 2.03 19.7 - 98.6 -0.8 21.24
#1 Air 2.07 20.2 0.0282 0.2 99.6 1.64
#2 Air 2.02 19.7 0.0291 -0.2 100.2 1.99
#3 Air 2.02 19.8 - -1.2 102.1 30.16

2.04 19.8 0.0286 - - 6.09

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 2.04 20.1 0.0270 0.0 99.0
#2 2.04 19.6 0.0265 0.0 98.7
#3 2.03 19.7 0.0279 0.0 98.2

2.04 19.8 0.0272 - -
Carbon Monoxide

Average

Test Inlet Gas
Carbon Monoxide
Carbon Monoxide

Test Inlet Gas

Average

Carbon Monoxide Mass Transfer Data

Oxygen Mass Transfer Data

Oxygen Mass Transfer Data

Test Inlet Gas

Average

 



www.manaraa.com

 311

Test Conditions:
DI Water Closed Vent Mode
A = 0.62% UG = 4.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 4.02 19.6 0.0612 99.6 0.2 2.76
#2 Nitrogen 4.07 20.7 0.0667 80.0 0.2 0.53
#3 Nitrogen 4.02 19.7 0.0687 100.4 -0.3 4.36
#1 Air 4.03 19.7 0.0657 0.7 99.8 3.34
#2 Air 4.00 20.7 0.0647 19.6 99.8 0.01
#3 Air 4.00 19.7 0.0686 -0.1 100.4 3.26
#1 Carbon Monoxide 4.02 19.7 0.0622 90.1 0.2 2.67
#2 Carbon Monoxide 4.07 20.7 0.0678 87.0 0.2 0.85
#3 Carbon Monoxide 4.02 19.7 0.0668 100.2 -0.4 3.46
#1 Air 4.04 19.8 0.0676 0.1 99.4 3.48
#2 Air 4.00 20.8 0.0645 14.3 99.7 0.19
#3 Air 3.99 19.7 0.0701 0.5 100.4 3.52

4.02 20.0 0.0662 - - 2.37

Test Conditions:
DI Water Closed Vent Mode
A = 0.62% UG = 6.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 6.09 19.5 0.0973 99.9 0.2 3.39
#2 Nitrogen 5.97 19.3 0.0972 101.3 0.3 4.83
#3 Nitrogen 5.98 19.7 0.0989 99.6 0.2 3.58
#1 Air 6.02 19.5 0.0934 -0.2 99.8 3.25
#2 Air 5.95 19.3 0.1099 0.1 100.5 4.33
#3 Air 5.98 19.8 0.1111 -0.1 100.7 3.80
#1 Carbon Monoxide 5.94 19.6 0.0939 99.2 0.2 3.26
#2 Carbon Monoxide 6.02 19.3 0.0904 99.6 0.2 3.20
#3 Carbon Monoxide 5.95 19.8 0.1031 100.1 0.1 3.92
#1 Air 6.02 19.7 0.0918 -0.7 99.5 3.14
#2 Air 5.95 19.4 0.0961 -0.7 100.1 3.78
#3 Air 6.09 19.9 0.1012 -0.3 100.0 3.43

6.00 19.6 0.0987 - - 3.66

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 5.94 19.6 0.0793 0.0 95.1
#2 6.02 19.3 0.0802 0.0 97.8
#3 5.95 19.8 0.0791 0.0 98.5

5.97 19.6 0.0795 - -

Carbon Monoxide
Carbon Monoxide

Average

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide

Oxygen Mass Transfer Data

Test Inlet Gas

Average
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Test Conditions:
DI Water Closed Vent Mode
A = 0.62% UG = 8.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 8.02 20.2 0.1207 100.8 0.3 4.22
#2 Nitrogen 8.09 19.1 0.1188 100.2 0.3 4.13
#3 Nitrogen 7.98 19.7 0.1367 100.2 0.3 4.34
#1 Air 8.02 20.2 0.1345 0.7 100.3 3.84
#2 Air 8.09 19.1 0.1378 -0.6 100.0 4.54
#3 Air 7.95 19.7 0.1397 0.3 100.0 4.06
#1 Carbon Monoxide 8.03 20.2 0.1187 100.5 0.3 3.98
#2 Carbon Monoxide 8.09 19.2 0.1151 100.7 0.3 3.66
#3 Carbon Monoxide 7.98 19.8 0.1399 100.4 0.3 4.67
#1 Air 8.03 20.2 0.1353 0.8 100.4 3.99
#2 Air 8.11 19.2 - -1.2 99.8 5.42
#3 Air 7.95 19.8 0.1404 0.0 100.2 3.88

8.03 19.7 0.1307 - - 4.23

Test Conditions:
DI Water Closed Vent Mode
A = 0.62% UG = 10.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 10.03 19.7 0.1290 99.4 0.3 3.32
#2 Nitrogen 9.99 19.6 - 103.1 0.2 5.39
#3 Nitrogen 10.05 19.7 0.1611 100.3 0.2 4.31
#1 Air 10.10 19.7 0.1361 0.7 100.1 2.72
#2 Air 10.00 19.6 0.1527 0.3 99.8 3.72
#3 Air 10.01 19.7 - -0.5 100.4 4.91
#1 Carbon Monoxide 10.01 19.7 0.1663 104.0 0.3 6.02
#2 Carbon Monoxide 9.98 19.6 0.1554 99.1 0.0 3.58
#3 Carbon Monoxide 10.05 19.7 - 100.5 0.0 5.17
#1 Air 10.11 19.8 0.1269 -0.2 100.2 2.77
#2 Air 10.03 19.7 0.1388 -0.5 99.7 3.30
#3 Air 10.02 19.7 0.1574 -0.4 100.5 3.89

10.03 19.7 0.1471 - - 4.09

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 10.01 19.7 0.1227 0.0 97.6
#2 9.98 19.6 0.1404 0.0 95.4
#3 10.05 19.7 0.1349 0.0 98.6

10.01 19.7 0.1327 - -Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas

Inlet Gas

Average

Carbon Monoxide
Carbon Monoxide

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide

Oxygen Mass Transfer Data

Test 
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Test Conditions:
DI Water Closed Vent Mode
A = 0.62% UG = 12.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 12.01 19.5 - 99.3 0.1 3.05
#2 Nitrogen 11.97 19.5 0.1521 99.2 0.2 3.30
#3 Nitrogen 11.99 19.7 0.1342 99.6 0.1 2.66
#1 Air 12.06 19.6 - 0.6 99.9 2.41
#2 Air 11.97 19.6 0.1498 -0.1 99.8 2.83
#3 Air 11.99 19.7 0.1414 0.2 100.3 3.09
#1 Carbon Monoxide 12.04 19.6 - 99.6 0.1 2.93
#2 Carbon Monoxide 11.98 19.6 0.1463 100.9 0.2 3.09
#3 Carbon Monoxide 12.01 19.7 0.1391 100.1 0.2 3.01
#1 Air 12.07 19.6 - -0.1 100.0 2.89
#2 Air 11.98 19.6 0.1544 0.6 100.1 3.24
#3 Air 12.00 19.7 0.1426 0.0 100.2 2.70

12.01 19.6 0.1450 - - 2.93

Test Conditions:
DI Water Closed Vent Mode
A = 0.62% UG = 14.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 14.02 19.7 0.1182 100.5 0.2 2.69
#2 Nitrogen 13.99 19.7 - 99.9 0.2 2.65
#3 Nitrogen 14.00 20.8 0.1408 100.0 0.0 3.36
#1 Air 14.05 19.7 - 0.3 100.4 2.69
#2 Air 13.95 19.7 0.1345 0.1 100.5 2.59
#3 Air 13.94 20.8 0.1292 -0.1 99.7 2.06
#1 Carbon Monoxide 14.10 19.7 - 99.8 0.2 2.19
#2 Carbon Monoxide 14.01 19.7 0.1231 99.4 0.2 2.95
#3 Carbon Monoxide 13.92 20.7 0.1337 101.3 0.0 2.30
#1 Air 14.09 19.7 - -0.8 99.9 2.39
#2 Air 14.00 19.6 0.1243 0.5 100.1 2.71
#3 Air 13.96 20.7 0.1322 0.5 100.1 2.45

14.00 20.0 0.1295 - - 2.59

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 14.10 19.7 0.1233 0.0 97.7
#2 14.01 19.7 0.1125 0.0 98.8
#3 13.92 20.7 0.1130 0.0 98.7

14.01 20.0 0.1162 - -Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide

Inlet Gas

Average

Carbon Monoxide
Carbon Monoxide

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Oxygen Mass Transfer Data

Test 
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Test Conditions:
DI Water Closed Vent Mode
A = 0.62% UG = 16.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 15.90 20.4 - 98.3 0.0 2.78
#2 Nitrogen 15.95 19.2 0.1267 99.4 0.0 2.65
#3 Nitrogen 15.96 19.6 0.1404 100.5 0.2 3.84
#1 Air 16.02 20.4 - 0.6 99.8 2.56
#2 Air 16.01 19.3 0.1320 0.8 100.1 2.53
#3 Air 16.00 19.6 0.1350 0.9 100.2 2.50
#1 Carbon Monoxide 15.93 20.4 - 99.8 0.1 2.91
#2 Carbon Monoxide 15.96 19.3 0.1400 100.5 0.2 3.47
#3 Carbon Monoxide 15.96 19.6 0.1395 100.2 0.1 3.85
#1 Air 16.04 20.4 - 0.6 99.7 2.26
#2 Air 16.01 19.3 0.1340 0.0 100.0 2.89
#3 Air 16.01 19.6 0.1344 0.6 100.5 2.36

15.98 19.8 0.1353 - - 2.88

Test Conditions:
DI Water Closed Vent Mode
A = 0.62% UG = 18.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 18.02 19.2 0.1162 99.8 0.1 2.72
#2 Nitrogen 18.05 19.1 - 99.5 0.2 2.67
#3 Nitrogen 17.95 19.9 0.1255 40.0 -1.4 0.11
#1 Air 18.02 19.2 0.1253 1.1 99.9 2.83
#2 Air 18.09 19.1 0.1351 0.9 100.3 3.26
#3 Air 17.99 20.0 0.1351 64.6 101.0 0.05
#1 Carbon Monoxide 18.06 19.2 0.1217 100.4 0.2 3.12
#2 Carbon Monoxide 18.05 19.0 0.1191 99.2 0.2 2.92
#3 Carbon Monoxide 17.95 20.0 0.1295 41.9 -1.2 0.03
#1 Air 18.05 19.2 0.1310 0.0 99.9 3.44
#2 Air 18.12 19.1 0.1305 0.3 100.3 2.85
#3 Air 18.00 20.0 0.1309 65.7 101.1 0.22

18.03 19.4 0.1273 - - 2.02

Test Inlet Gas

Average

Oxygen Mass Transfer Data

Oxygen Mass Transfer Data

Test Inlet Gas

Average

 



www.manaraa.com

 315

Test Conditions:
DI Water Closed Vent Mode
A = 0.62% UG = 20.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 19.98 19.2 0.1240 98.3 0.1 2.47
#2 Nitrogen 20.04 19.5 0.1217 99.5 0.2 2.74
#3 Nitrogen 19.98 20.0 0.1394 99.7 0.1 2.83
#1 Air 20.05 19.2 0.1331 1.8 100.0 2.83
#2 Air 20.11 19.5 0.1384 0.1 100.4 2.67
#3 Air 19.97 20.0 0.1366 0.1 99.7 3.09
#1 Carbon Monoxide 19.96 19.2 0.1358 100.6 0.2 3.39
#2 Carbon Monoxide 20.08 19.5 0.1266 100.5 0.2 3.21
#3 Carbon Monoxide 20.03 20.0 0.1363 98.8 0.1 2.58
#1 Air 20.09 19.2 0.1357 -0.3 100.0 2.79
#2 Air 20.14 19.4 0.1391 0.2 100.4 2.75
#3 Air 19.99 20.0 0.1348 1.0 99.7 2.73

20.04 19.6 0.1335 - - 2.84

Oxygen Mass Transfer Data

Test Inlet Gas

Average
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Test Conditions:
DI Water Bubble Column Mode
A = 0.62% UG = 0.5 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 0.57 20.2 0.0094 99.4 -0.3 3.40
#2 Nitrogen 0.53 19.6 0.0088 99.2 -0.6 3.49
#3 Nitrogen 0.51 19.9 0.0084 99.4 -0.7 4.97
#1 Air 0.56 20.3 0.0094 0.5 100.3 3.04
#2 Air 0.51 19.7 0.0087 0.7 100.7 3.28
#3 Air 0.50 20.0 0.0083 0.5 100.7 2.74
#1 Carbon Monoxide 0.57 20.4 0.0096 99.4 -0.3 3.53
#2 Carbon Monoxide 0.53 19.8 0.0089 99.5 -0.6 4.90
#3 Carbon Monoxide 0.51 20.2 0.0085 99.5 -0.7 4.01
#1 Air 0.56 20.5 0.0094 0.2 100.2 2.47
#2 Air 0.51 19.9 0.0088 0.6 100.5 3.02
#3 Air 0.51 20.3 0.0082 0.4 101.0 3.00

0.53 20.1 0.0089 - - 3.49

Test Conditions:
DI Water Bubble Column Mode
A = 0.62% UG = 2.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 2.03 20.1 0.0329 100.7 0.2 3.14
#2 Nitrogen 2.09 20.4 0.0328 99.7 0.1 3.50
#3 Nitrogen 2.09 20.8 0.0331 99.6 0.2 2.28
#1 Air 2.00 20.1 0.0325 0.2 99.7 2.68
#2 Air 2.02 20.5 0.0319 0.1 99.9 3.55
#3 Air 2.01 20.8 0.0318 0.4 99.7 2.16
#1 Carbon Monoxide 2.01 20.2 0.0325 99.5 0.2 2.28
#2 Carbon Monoxide 2.09 20.5 0.0330 99.7 0.1 3.64
#3 Carbon Monoxide 2.01 20.8 0.0314 99.6 0.2 2.79
#1 Air 2.00 20.2 0.0314 -0.2 99.8 2.09
#2 Air 2.02 20.5 0.0313 -0.3 100.0 3.13
#3 Air 2.02 20.9 0.0319 0.4 99.8 2.21

2.03 20.5 0.0322 - - 2.79

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 2.01 20.2 0.0323 0.0 97.7
#2 2.09 20.5 0.0313 0.0 99.4
#3 2.01 20.8 0.0258 0.0 99.7

2.04 20.5 0.0298 - -

Oxygen Mass Transfer Data

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Test Inlet Gas

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide
Carbon Monoxide
Carbon Monoxide

Average
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Test Conditions:
DI Water Bubble Column Mode
A = 0.62% UG = 4.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 4.04 20.5 0.0731 100.6 0.2 3.42
#2 Nitrogen 0.38 19.6 0.0697 99.6 0.1 3.77
#3 Nitrogen 4.05 22.8 0.0734 99.7 0.2 2.65
#1 Air 4.03 20.5 0.0738 -0.1 99.8 3.42
#2 Air 0.38 19.7 0.0709 1.1 102.9 3.98
#3 Air 4.01 22.8 0.0785 -1.5 100.0 3.54
#1 Carbon Monoxide 4.15 20.5 - 110.1 -0.3 11.22
#2 Carbon Monoxide 0.38 19.7 0.0717 100.5 0.2 4.36
#3 Carbon Monoxide 4.06 22.8 0.0749 99.5 0.2 3.18
#1 Air 4.02 20.5 0.0714 -0.7 99.9 3.14
#2 Air 0.38 19.8 0.0713 0.2 99.8 4.35
#3 Air 4.02 22.8 0.0769 1.2 100.1 2.96

2.82 21.0 0.0732 - - 4.17

Test Conditions:
DI Water Bubble Column Mode
A = 0.62% UG = 6.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 0.41 20.2 0.1133 100.0 0.1 3.88
#2 Nitrogen 6.00 20.2 0.1024 98.7 0.1 3.35
#3 Nitrogen 5.99 20.4 0.1038 99.4 0.2 2.85
#1 Air 0.41 20.2 0.1127 0.3 99.8 3.61
#2 Air 5.94 20.2 0.1040 0.6 99.9 3.82
#3 Air 5.95 20.4 0.1123 0.5 99.9 3.60
#1 Carbon Monoxide 0.41 20.2 0.1167 100.1 0.2 4.32
#2 Carbon Monoxide 6.03 20.2 0.1079 99.6 0.1 4.05
#3 Carbon Monoxide 6.00 20.4 0.1057 99.2 0.1 3.19
#1 Air 0.41 20.2 0.1117 0.5 99.8 3.93
#2 Air 5.97 20.2 0.1005 0.6 99.7 3.61
#3 Air 5.95 20.4 0.1054 0.7 99.8 3.10

4.12 20.3 0.1080 - - 3.61

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 0.41 20.2 0.0873 0.0 100.7
#2 6.03 20.2 0.0821 0.0 100.8
#3 6.00 20.4 0.0825 0.0 100.2

4.14 20.3 0.0839 - -

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide
Carbon Monoxide
Carbon Monoxide

Average
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Test Conditions:
DI Water Bubble Column Mode
A = 0.62% UG = 8.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 8.03 20.0 - 100.6 0.1 4.61
#2 Nitrogen 8.03 20.2 0.1305 99.3 0.2 3.85
#3 Nitrogen 8.16 20.2 0.1321 99.8 0.2 2.92
#1 Air 7.96 20.1 0.1408 0.4 99.9 3.96
#2 Air 7.99 20.2 0.1261 -0.7 99.7 3.43
#3 Air 8.08 20.1 0.1325 1.5 100.3 2.86
#1 Carbon Monoxide 8.05 20.1 0.1461 100.2 0.1 4.09
#2 Carbon Monoxide 8.05 20.2 0.1262 99.0 0.1 3.52
#3 Carbon Monoxide 8.16 20.1 0.1285 99.4 0.0 2.81
#1 Air 7.98 20.1 0.1384 -0.1 99.9 3.49
#2 Air 7.99 20.2 0.1252 1.2 99.7 3.29
#3 Air 8.07 20.1 - 0.0 99.6 3.95

8.04 20.1 0.1327 - - 3.56

Test Conditions:
DI Water Bubble Column Mode
A = 0.62% UG = 10.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 10.07 20.2 - 98.3 0.2 3.50
#2 Nitrogen 10.05 20.1 0.1464 100.5 0.2 3.44
#3 Nitrogen 10.04 20.4 0.1462 99.6 0.2 3.26
#1 Air 9.99 20.2 - -0.2 99.9 3.28
#2 Air 10.02 20.1 0.1432 0.4 99.7 3.23
#3 Air 10.01 20.4 0.1434 0.7 99.9 3.20
#1 Carbon Monoxide 10.04 20.2 - 100.1 0.1 3.39
#2 Carbon Monoxide 10.03 20.2 0.1481 99.8 0.1 3.49
#3 Carbon Monoxide 10.04 20.4 0.1506 100.0 0.2 3.71
#1 Air 10.01 20.3 0.1545 -0.4 99.8 3.19
#2 Air 10.02 20.2 0.1363 0.5 99.6 2.98
#3 Air 10.02 20.4 0.1449 -0.4 99.6 3.44

10.03 20.3 0.1460 - - 3.34

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 10.04 20.2 0.1180 0.0 97.9
#2 10.03 20.2 0.1192 0.0 97.5
#3 10.04 20.4 0.1125 0.0 100.2

10.04 20.3 0.1166 - -

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide
Carbon Monoxide

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
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Test Conditions:
DI Water Bubble Column Mode
A = 0.62% UG = 12.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 12.01 20.2 0.1524 100.1 0.1 2.38
#2 Nitrogen 12.03 20.3 0.1511 100.4 0.2 3.46
#3 Nitrogen 11.98 20.9 0.1360 99.3 0.2 2.11
#1 Air 12.03 20.2 0.1568 -0.9 99.9 2.48
#2 Air 12.04 20.3 0.1419 -0.7 99.8 2.45
#3 Air 12.00 20.9 0.1482 0.0 99.6 2.38
#1 Carbon Monoxide 12.02 20.1 0.1508 99.4 0.1 2.28
#2 Carbon Monoxide 12.04 20.3 0.1476 101.0 0.2 3.48
#3 Carbon Monoxide 12.00 20.8 0.1422 101.6 0.2 2.56
#1 Air 12.03 20.1 0.1559 0.8 99.7 2.29
#2 Air 12.05 20.2 0.1411 -1.1 99.9 2.55
#3 Air 12.02 20.8 0.1459 -0.2 99.8 1.93

12.02 20.4 0.1475 - - 2.53

Test Conditions:
DI Water Bubble Column Mode
A = 0.62% UG = 14.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 14.03 19.9 0.1476 100.6 0.1 3.56
#2 Nitrogen 14.01 20.0 0.1324 99.4 0.1 3.14
#3 Nitrogen 14.04 20.6 0.1360 100.3 0.1 2.37
#1 Air 13.96 19.9 0.1338 1.3 100.0 2.45
#2 Air 13.99 20.0 0.1282 -0.6 99.8 2.24
#3 Air 14.04 20.6 0.1473 0.5 100.1 2.18
#1 Carbon Monoxide 13.81 19.8 0.1382 99.5 0.0 2.22
#2 Carbon Monoxide 14.01 20.0 0.1368 99.5 0.1 3.16
#3 Carbon Monoxide 13.94 20.6 - 100.4 0.2 3.43
#1 Air 14.00 19.8 0.1363 0.6 99.9 2.48
#2 Air 13.99 19.9 0.1271 0.5 99.6 2.52
#3 Air 14.06 20.5 0.1437 0.4 100.1 2.08

13.99 20.1 0.1370 - - 2.65

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 13.81 19.8 0.1148 0.0 102.7
#2 14.01 20.0 0.1206 0.0 99.0
#3 13.94 20.6 - 0.0 100.1

13.92 20.1 0.1177 - -

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide
Carbon Monoxide

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide
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Test Conditions:
DI Water Bubble Column Mode
A = 0.62% UG = 16.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 16.03 20.7 0.1289 100.3 0.1 2.50
#2 Nitrogen 15.93 20.1 0.1318 100.3 0.1 3.15
#3 Nitrogen 15.99 20.1 0.1365 100.3 0.1 2.16
#1 Air 15.99 20.6 0.1274 0.5 100.0 1.87
#2 Air 15.98 20.0 0.1305 -0.4 100.0 2.91
#3 Air 16.02 20.1 0.1460 0.9 99.5 2.78
#1 Carbon Monoxide 16.06 20.6 0.1311 99.7 0.1 2.51
#2 Carbon Monoxide 15.94 20.0 0.1379 101.7 0.2 3.60
#3 Carbon Monoxide 16.01 20.1 - 138.0 0.1 7.10
#1 Air 16.01 20.6 0.1308 -0.1 99.9 2.32
#2 Air 16.00 19.9 0.1287 0.1 99.9 2.50
#3 Air 16.03 20.1 0.1351 0.9 100.4 1.90

16.00 20.2 0.1332 - - 2.94

Test Conditions:
DI Water Bubble Column Mode
A = 0.62% UG = 18.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 18.05 20.4 0.1255 99.7 0.0 2.11
#2 Nitrogen 17.96 20.1 0.1284 99.2 0.1 2.88
#3 Nitrogen 18.02 20.4 0.1387 100.0 0.0 2.49
#1 Air 18.00 20.4 0.1429 1.5 99.8 2.86
#2 Air 17.96 20.1 0.1356 0.5 99.9 3.27
#3 Air 17.99 20.4 0.1412 0.6 99.8 2.20
#1 Carbon Monoxide 18.06 20.3 - 103.3 0.2 4.69
#2 Carbon Monoxide 17.99 20.0 0.1347 99.9 0.1 3.27
#3 Carbon Monoxide 18.04 20.3 0.1375 100.2 0.1 2.58
#1 Air 18.03 20.2 0.1353 0.4 99.9 2.44
#2 Air 17.99 19.9 0.1288 1.2 99.9 2.54
#3 Air 17.94 20.2 - -0.5 99.7 2.63

18.00 20.2 0.1349 - - 2.83

Oxygen Mass Transfer Data

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Test Inlet Gas

Average

 



www.manaraa.com

 321

Test Conditions:
DI Water Bubble Column Mode
A = 0.62% UG = 20.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 20.01 20.0 0.1410 99.0 0.1 2.43
#2 Nitrogen 19.97 19.8 0.1355 99.5 0.1 3.02
#3 Nitrogen 19.95 20.1 - 108.0 -0.2 5.87
#1 Air 20.01 20.0 0.1485 -0.5 99.9 2.90
#2 Air 19.98 19.7 0.1345 0.3 99.7 2.70
#3 Air 19.97 20.0 0.1514 -0.4 99.8 2.34
#1 Carbon Monoxide 20.02 19.9 0.1447 99.4 0.1 2.97
#2 Carbon Monoxide 19.97 19.6 0.1351 99.9 0.1 3.24
#3 Carbon Monoxide 19.96 20.0 0.1497 101.8 0.1 3.16
#1 Air 20.03 19.9 - -0.3 99.8 3.56
#2 Air 19.99 19.6 0.1412 0.6 99.7 3.15
#3 Air 20.00 19.9 0.1445 1.3 100.1 2.07

19.99 19.9 0.1426 - - 3.12

Oxygen Mass Transfer Data

Test Inlet Gas

Average
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Test Conditions:
DI Water Open Vent Mode
A = 0.99% UG = 0.5 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 0.50 19.9 0.0070 98.9 -2.1 4.36
#2 Nitrogen 0.55 20.1 0.0080 99.6 -1.1 4.08
#3 Nitrogen 0.50 20.5 0.0077 99.5 -1.5 4.34
#1 Air 0.49 20.0 0.0069 0.5 102.2 2.61
#2 Air 0.50 20.2 0.0076 0.3 101.3 1.53
#3 Air 0.47 20.5 0.0076 0.6 101.4 2.62
#1 Carbon Monoxide 0.50 20.2 0.0070 99.5 -2.1 3.98
#2 Carbon Monoxide 0.43 20.4 0.0069 99.1 -2.3 5.68
#3 Carbon Monoxide 0.50 20.6 0.0078 99.3 -1.3 4.14
#1 Air 0.49 20.4 0.0069 0.4 102.0 0.10
#2 Air 0.50 20.5 0.0078 0.5 101.2 1.60
#3 Air 0.47 20.7 0.0076 0.5 101.3 2.53

0.49 20.3 0.0074 - - 3.13

Test Conditions:
DI Water Open Vent Mode
A = 0.99% UG = 2.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 1.98 20.1 0.0253 99.9 0.0 2.17
#2 Nitrogen 2.00 21.1 0.0271 99.4 0.1 2.25
#3 Nitrogen 1.97 20.9 0.0261 99.7 0.0 1.68
#1 Air 1.99 20.2 0.0257 0.8 100.0 1.25
#2 Air 1.98 21.1 0.0268 0.7 100.0 0.98
#3 Air 1.98 20.9 0.0265 0.6 99.8 1.18
#1 Carbon Monoxide 2.01 20.2 0.0257 99.8 0.0 1.78
#2 Carbon Monoxide 2.02 21.2 0.0270 99.5 0.0 2.08
#3 Carbon Monoxide 2.01 20.9 0.0266 99.0 0.0 2.06
#1 Air 1.99 20.3 0.0258 1.1 100.0 1.17
#2 Air 1.98 21.2 0.0262 0.3 99.9 0.90
#3 Air 1.98 21.0 0.0267 0.2 100.1 1.13

1.99 20.8 0.0263 - - 1.55

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 2.01 20.2 0.0279 0.0 99.9
#2 2.02 21.2 0.0268 0.0 100.3
#3 2.01 20.9 0.0294 0.0 99.3

2.01 20.8 0.0281 - -
Carbon Monoxide

Average

Test Inlet Gas
Carbon Monoxide
Carbon Monoxide

Test Inlet Gas

Average

Carbon Monoxide Mass Transfer Data

Oxygen Mass Transfer Data

Oxygen Mass Transfer Data

Test Inlet Gas

Average
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Test Conditions:
DI Water Open Vent Mode
A = 0.99% UG = 4.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 3.99 20.4 0.0574 100.1 0.1 2.28
#2 Nitrogen 3.99 20.5 0.0576 98.8 -1.2 1.67
#3 Nitrogen 4.03 20.2 0.0584 99.8 0.1 2.14
#1 Air 3.95 20.4 0.0578 -0.2 99.8 2.23
#2 Air 4.00 20.6 0.0589 0.1 100.9 2.22
#3 Air 3.98 20.2 0.0595 0.0 99.9 2.46
#1 Carbon Monoxide 3.99 20.5 0.0573 100.4 0.0 1.74
#2 Carbon Monoxide 3.98 20.6 0.0592 99.4 -1.0 2.35
#3 Carbon Monoxide 4.03 20.2 0.0582 100.4 0.0 2.23
#1 Air 3.95 20.5 0.0567 0.7 99.8 2.06
#2 Air 3.99 20.6 0.0594 0.4 101.0 2.13
#3 Air 3.98 20.3 0.0595 0.2 99.9 2.30

3.99 20.4 0.0583 - - 2.15

Test Conditions:
DI Water Open Vent Mode
A = 0.99% UG = 6.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 5.96 20.5 0.0873 99.8 0.0 2.13
#2 Nitrogen 5.98 20.4 0.0878 99.5 0.1 2.64
#3 Nitrogen 5.94 20.6 0.0888 101.2 0.2 2.43
#1 Air 6.01 20.5 0.0916 0.4 99.8 2.47
#2 Air 5.96 20.5 0.0897 0.6 99.8 2.26
#3 Air 5.95 20.6 0.0880 0.7 100.0 1.86
#1 Carbon Monoxide 5.90 20.5 0.0868 98.5 0.0 2.33
#2 Carbon Monoxide 5.94 20.5 0.0877 99.9 0.1 2.25
#3 Carbon Monoxide 6.02 20.6 0.0887 99.0 0.1 2.13
#1 Air 6.01 20.5 0.0909 -0.3 99.9 2.43
#2 Air 5.97 20.5 0.0866 0.2 100.0 1.97
#3 Air 5.95 20.7 0.0876 -0.1 99.8 2.12

5.97 20.5 0.0885 - - 2.25

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 5.90 20.5 0.0893 0.0 99.2
#2 5.94 20.5 0.0890 0.0 99.2
#3 6.02 20.6 0.0869 0.0 100.6

5.95 20.5 0.0884 - -

Carbon Monoxide
Carbon Monoxide

Average

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide

Oxygen Mass Transfer Data

Test Inlet Gas

Average
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Test Conditions:
DI Water Open Vent Mode
A = 0.99% UG = 8.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 8.01 20.0 0.1045 101.2 0.2 2.59
#2 Nitrogen 7.98 20.5 0.1066 99.8 0.1 2.22
#3 Nitrogen 8.09 20.8 0.1267 197.8 -0.2 7.90
#1 Air 8.03 20.0 0.1029 -0.7 99.8 1.96
#2 Air 8.00 20.5 0.1103 0.9 99.8 2.63
#3 Air 8.04 20.9 0.1103 1.4 100.0 2.19
#1 Carbon Monoxide 8.00 20.0 0.0992 99.7 0.1 1.83
#2 Carbon Monoxide 7.99 20.6 0.1109 102.2 0.3 3.26
#3 Carbon Monoxide 8.03 20.8 0.1077 100.1 0.1 2.07
#1 Air 8.02 20.1 0.1053 0.3 99.9 2.32
#2 Air 8.01 20.6 0.1117 -0.3 100.0 2.71
#3 Air 8.04 20.8 0.1090 2.4 100.0 2.21

8.02 20.5 0.1087 - - 2.82

Test Conditions:
DI Water Open Vent Mode
A = 0.99% UG = 10.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 10.00 20.6 0.1041 100.0 0.1 1.69
#2 Nitrogen 10.01 20.6 0.1296 99.3 0.1 2.24
#3 Nitrogen 10.02 21.1 0.1297 100.5 0.1 2.73
#1 Air 10.05 20.6 0.1104 1.3 100.0 1.78
#2 Air 10.05 20.7 0.1341 0.0 99.7 2.09
#3 Air 10.07 21.1 0.1331 1.4 100.1 2.52
#1 Carbon Monoxide 10.04 20.6 0.1108 100.6 0.2 2.26
#2 Carbon Monoxide 10.08 20.7 0.1264 97.0 0.0 1.94
#3 Carbon Monoxide 10.14 21.1 0.1321 98.6 0.2 2.14
#1 Air 10.07 20.6 0.1089 -0.3 99.9 1.94
#2 Air 10.07 20.7 0.1266 0.2 99.8 2.20
#3 Air 10.12 21.1 0.1349 1.6 99.8 2.32

10.06 20.8 0.1234 - - 2.15

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 10.04 20.6 0.1157 0.0 100.6
#2 10.08 20.7 0.1230 0.0 100.1
#3 10.14 21.1 0.1320 0.0 99.0

10.09 20.8 0.1236 - -Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas

Inlet Gas

Average

Carbon Monoxide
Carbon Monoxide

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide

Oxygen Mass Transfer Data

Test 
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Test Conditions:
DI Water Open Vent Mode
A = 0.99% UG = 12.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 11.95 20.1 0.1162 99.3 0.0 1.61
#2 Nitrogen 12.04 20.2 0.1565 216.6 -0.1 6.39
#3 Nitrogen 12.00 20.3 0.1270 99.0 -0.3 2.10
#1 Air 11.95 20.1 0.1286 -0.5 100.1 2.14
#2 Air 11.90 20.2 0.1364 0.7 99.9 2.07
#3 Air 12.03 20.3 0.1460 0.2 99.6 2.49
#1 Carbon Monoxide 12.07 20.2 0.1173 100.8 -0.7 1.34
#2 Carbon Monoxide 12.05 20.2 0.1433 100.9 0.2 2.20
#3 Carbon Monoxide 12.03 20.3 0.1352 99.4 0.0 2.03
#1 Air 11.97 20.2 0.1568 -0.1 116.0 3.06
#2 Air 11.90 20.2 0.1352 -0.3 100.0 1.98
#3 Air 12.05 20.3 0.1465 -0.4 100.0 2.18

11.99 20.2 0.1371 - - 2.47

Test Conditions:
DI Water Open Vent Mode
A = 0.99% UG = 14.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 13.99 20.6 0.1408 101.2 0.2 2.07
#2 Nitrogen 14.04 20.3 0.1488 100.8 0.2 2.39
#3 Nitrogen 14.03 20.4 0.1367 100.7 0.1 2.05
#1 Air 14.02 20.5 0.1373 -0.2 99.8 1.85
#2 Air 14.01 20.3 0.1426 -0.1 100.0 1.63
#3 Air 14.07 20.4 0.1399 -1.0 100.0 2.12
#1 Carbon Monoxide 13.99 20.5 0.1398 100.5 0.2 1.93
#2 Carbon Monoxide 13.98 20.3 0.1496 100.0 0.2 2.25
#3 Carbon Monoxide 14.04 20.4 0.1399 101.5 0.2 2.00
#1 Air 14.06 20.5 0.1384 1.1 99.6 1.81
#2 Air 14.02 20.3 0.1378 -0.5 99.7 1.89
#3 Air 14.08 20.4 0.1426 -1.1 99.8 2.41

14.03 20.4 0.1412 - - 2.03

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 13.99 20.5 0.1315 0.0 100.1
#2 13.98 20.3 0.1327 0.0 101.1
#3 14.04 20.4 0.1336 0.0 100.7

14.00 20.4 0.1326 - -Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide

Inlet Gas

Average

Carbon Monoxide
Carbon Monoxide

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Oxygen Mass Transfer Data

Test 
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Test Conditions:
DI Water Open Vent Mode
A = 0.99% UG = 16.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 16.09 20.7 0.1565 172.8 0.0 6.40
#2 Nitrogen 15.97 20.7 0.1379 102.8 0.2 2.69
#3 Nitrogen 15.97 20.3 0.1411 98.1 0.1 2.48
#1 Air 16.07 20.7 0.1527 -50.9 99.7 6.55
#2 Air 15.94 20.8 0.1440 0.0 99.7 2.18
#3 Air 15.97 20.4 0.1470 -1.0 99.5 2.47
#1 Carbon Monoxide 16.11 20.7 0.1310 101.1 0.4 1.41
#2 Carbon Monoxide 15.99 20.8 0.1351 100.2 0.2 1.76
#3 Carbon Monoxide 15.99 20.4 0.1346 100.5 -0.1 1.92
#1 Air 16.10 20.7 0.1171 0.1 100.0 1.55
#2 Air 15.95 20.8 0.1362 1.1 99.6 1.55
#3 Air 15.98 20.4 0.1439 -0.2 99.7 2.04

16.01 20.6 0.1398 - - 2.75

Test Conditions:
DI Water Open Vent Mode
A = 0.99% UG = 18.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 17.92 20.1 0.1554 103.2 0.3 4.12
#2 Nitrogen 18.02 20.8 0.1275 99.4 -0.2 1.89
#3 Nitrogen 18.02 21.4 0.1400 99.1 -0.1 1.90
#1 Air 18.00 20.1 0.1410 0.0 99.6 2.25
#2 Air 18.00 20.8 0.1349 -0.5 100.1 1.76
#3 Air 18.04 21.4 0.1383 1.7 100.0 1.39
#1 Carbon Monoxide 18.01 20.1 0.1362 101.1 0.2 1.83
#2 Carbon Monoxide 18.03 20.8 0.1338 99.5 0.0 1.99
#3 Carbon Monoxide 18.05 21.4 0.1471 100.8 0.0 2.57
#1 Air 18.02 20.0 0.1350 -0.9 100.0 1.79
#2 Air 18.04 20.7 0.1354 -0.5 100.2 1.86
#3 Air 18.06 21.4 0.1442 -0.3 99.5 1.80

18.02 20.7 0.1391 - - 2.10

Test Inlet Gas

Average

Oxygen Mass Transfer Data

Oxygen Mass Transfer Data

Test Inlet Gas

Average
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Test Conditions:
DI Water Open Vent Mode
A = 0.99% UG = 20.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 19.94 21.0 0.1438 99.2 0.2 2.10
#2 Nitrogen 19.95 20.7 0.1417 100.8 0.1 1.97
#3 Nitrogen 20.06 20.2 0.1416 100.0 0.0 2.16
#1 Air 20.00 21.0 0.1343 -0.1 99.5 2.07
#2 Air 20.00 20.7 0.1393 0.1 99.9 1.86
#3 Air 20.07 20.2 0.1479 -1.0 99.9 2.20
#1 Carbon Monoxide 19.97 21.0 0.1485 100.4 0.1 2.16
#2 Carbon Monoxide 19.97 20.7 0.1555 100.4 0.3 2.87
#3 Carbon Monoxide 20.04 20.2 0.1448 99.3 0.1 2.13
#1 Air 20.01 21.0 0.1395 -1.0 99.8 2.47
#2 Air 19.99 20.7 0.1454 0.4 100.0 2.15
#3 Air 20.12 20.2 0.1537 -0.5 100.1 2.64

20.01 20.6 0.1447 - - 2.23

Oxygen Mass Transfer Data

Test Inlet Gas

Average
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Test Conditions:
DI Water Open Vent Mode
A = 2.22% UG = 0.5 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 0.53 20.3 0.0078 99.4 -1.2 3.81
#2 Nitrogen 0.49 20.3 0.0074 98.9 -1.6 4.09
#3 Nitrogen 0.52 20.4 0.0079 99.6 -1.2 5.08
#1 Air 0.53 20.4 0.0080 99.5 -1.1 3.29
#2 Air 0.50 20.4 0.0076 99.2 -1.4 4.32
#3 Air 0.53 20.5 0.0081 99.3 -1.1 4.59
#1 Carbon Monoxide 0.53 20.5 0.0079 99.2 -1.1 2.98
#2 Carbon Monoxide 0.49 20.5 0.0074 99.4 -1.6 4.41
#3 Carbon Monoxide 0.52 20.6 0.0080 99.4 -1.2 4.38
#1 Air 0.53 20.6 0.0079 0.7 101.0 0.71
#2 Air 0.50 20.6 0.0077 0.7 101.1 1.81
#3 Air 0.53 20.7 0.0082 0.2 100.9 2.21

0.52 20.5 0.0078 - - 3.47

Test Conditions:
DI Water Open Vent Mode
A = 2.22% UG = 2.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 1.99 20.0 0.0256 99.8 0.0 1.95
#2 Nitrogen 2.01 20.2 0.0267 100.0 0.1 1.92
#3 Nitrogen 2.03 19.8 0.0252 99.4 0.0 1.29
#1 Air 1.99 20.0 0.0258 1.0 99.8 1.62
#2 Air 1.99 20.2 0.0263 0.7 100.1 1.59
#3 Air 2.01 19.8 0.0255 0.5 99.8 1.20
#1 Carbon Monoxide 2.01 20.1 0.0259 99.7 -0.1 2.01
#2 Carbon Monoxide 2.03 20.3 0.0269 99.8 0.0 1.97
#3 Carbon Monoxide 2.01 19.9 0.0254 99.6 0.0 1.83
#1 Air 1.99 20.1 0.0255 0.6 100.0 1.20
#2 Air 1.99 20.3 0.0263 -0.1 99.9 1.22
#3 Air 2.01 20.0 0.0252 0.2 100.2 1.38

2.01 20.1 0.0259 - - 1.60

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 2.01 20.1 0.0250 0.0 99.4
#2 2.03 20.3 0.0254 0.0 99.9
#3 2.01 19.9 0.0257 0.0 100.9

2.02 20.1 0.0254 - -

Oxygen Mass Transfer Data

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Test Inlet Gas

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide
Carbon Monoxide
Carbon Monoxide

Average
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Test Conditions:
DI Water Open Vent Mode
A = 2.22% UG = 4.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 4.01 20.1 0.0563 99.9 0.0 2.00
#2 Nitrogen 3.97 20.4 0.0554 100.2 0.1 2.05
#3 Nitrogen 3.99 19.9 0.0552 100.1 0.1 2.40
#1 Air 3.99 20.2 0.0573 0.2 100.1 2.11
#2 Air 3.98 20.4 0.0576 -0.6 99.9 2.38
#3 Air 4.01 20.0 0.0567 0.1 100.1 2.63
#1 Carbon Monoxide 4.09 20.2 0.0589 98.9 0.1 2.07
#2 Carbon Monoxide 3.97 20.5 0.0555 100.6 0.1 2.07
#3 Carbon Monoxide 3.99 20.0 0.0556 100.8 0.1 2.48
#1 Air 4.06 20.3 0.0582 -0.2 99.8 2.18
#2 Air 3.98 20.5 0.0572 0.2 100.0 2.23
#3 Air 4.01 20.1 0.0564 0.2 100.0 2.30

4.00 20.2 0.0567 - - 2.24

Test Conditions:
DI Water Open Vent Mode
A = 2.22% UG = 6.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 5.93 20.8 0.0810 100.6 0.0 2.05
#2 Nitrogen 5.94 20.3 0.0815 100.0 0.1 1.85
#3 Nitrogen 6.00 20.2 0.0826 99.8 0.2 2.35
#1 Air 5.97 20.8 0.0840 -0.4 99.9 2.32
#2 Air 5.94 20.3 0.0841 -0.5 99.9 2.16
#3 Air 5.97 20.3 0.0821 0.0 100.0 2.18
#1 Carbon Monoxide 5.96 20.8 0.0822 100.2 0.0 2.50
#2 Carbon Monoxide 5.99 20.4 0.0871 101.6 0.2 2.81
#3 Carbon Monoxide 6.00 20.3 0.0840 99.5 0.2 2.30
#1 Air 5.97 20.8 0.0824 0.4 99.8 1.79
#2 Air 5.93 20.4 0.0818 0.6 100.0 1.96
#3 Air 5.97 20.3 0.0800 0.1 99.8 1.39

5.96 20.5 0.0827 - - 2.14

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 5.96 20.8 0.0818 0.0 98.0
#2 5.99 20.4 0.0825 0.0 98.5
#3 6.00 20.3 0.0815 0.0 99.2

5.98 20.5 0.0819 - -

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide
Carbon Monoxide
Carbon Monoxide

Average
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Test Conditions:
DI Water Open Vent Mode
A = 2.22% UG = 8.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 8.12 20.3 0.0985 99.4 0.1 2.00
#2 Nitrogen 7.99 19.4 0.0986 102.3 0.3 2.89
#3 Nitrogen 8.05 19.8 0.0947 99.7 0.0 1.92
#1 Air 8.08 20.3 0.1013 0.1 99.8 2.47
#2 Air 7.97 19.4 0.0909 0.2 100.0 2.15
#3 Air 8.07 19.8 0.0945 -0.5 100.0 1.85
#1 Carbon Monoxide 8.13 20.3 0.0990 100.1 0.1 2.05
#2 Carbon Monoxide 7.99 19.5 0.0908 99.1 0.0 1.80
#3 Carbon Monoxide 8.03 19.9 0.0989 100.2 0.2 2.73
#1 Air 8.09 20.3 0.1003 1.7 99.8 1.89
#2 Air 7.98 19.5 0.0965 1.5 99.9 2.09
#3 Air 8.06 19.9 0.1022 0.7 99.7 2.47

8.05 19.9 0.0972 - - 2.19

Test Conditions:
DI Water Open Vent Mode
A = 2.22% UG = 10.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 9.93 20.4 0.1112 99.3 -0.2 2.31
#2 Nitrogen 10.04 20.8 0.1083 100.2 0.2 1.88
#3 Nitrogen 10.03 20.3 0.1047 99.2 0.0 1.62
#1 Air 10.00 20.4 0.1122 -0.9 99.9 2.40
#2 Air 10.08 20.8 0.1157 -1.9 99.9 2.14
#3 Air 10.05 20.3 0.1176 -0.8 99.8 2.65
#1 Carbon Monoxide 10.07 20.4 0.1154 99.4 -0.1 2.57
#2 Carbon Monoxide 10.03 20.8 0.1122 100.5 0.1 2.57
#3 Carbon Monoxide 10.06 20.3 0.1099 98.6 0.1 2.02
#1 Air 10.04 20.4 0.1119 -1.3 100.0 1.95
#2 Air 10.09 20.8 0.1111 -0.7 100.2 2.22
#3 Air 10.06 20.3 0.1075 -0.1 99.8 2.07

10.04 20.5 0.1115 - - 2.20

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 10.07 20.4 0.1091 0.0 99.2
#2 10.03 20.8 0.1125 0.0 98.7
#3 10.06 20.3 0.1141 0.0 98.7

10.06 20.5 0.1119 - -

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide
Carbon Monoxide

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
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Test Conditions:
DI Water Open Vent Mode
A = 2.22% UG = 12.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 12.02 20.1 0.1144 98.9 0.2 1.21
#2 Nitrogen 11.99 20.5 0.1205 100.7 0.2 2.30
#3 Nitrogen 11.98 20.1 0.1118 100.1 0.1 2.19
#1 Air 12.00 20.1 0.1141 1.7 99.9 1.90
#2 Air 12.08 20.5 0.1213 -0.2 100.0 1.67
#3 Air 12.03 20.1 0.1171 -0.7 100.0 2.39
#1 Carbon Monoxide 12.03 20.1 0.1112 99.7 0.0 1.93
#2 Carbon Monoxide 12.00 20.6 0.1175 100.5 0.1 2.10
#3 Carbon Monoxide 11.99 20.1 0.1187 100.1 0.1 2.35
#1 Air 12.01 20.2 0.1198 1.1 100.0 1.93
#2 Air 12.09 20.6 0.1180 1.2 99.9 1.92
#3 Air 12.04 20.1 0.1240 0.9 99.8 2.50

12.02 20.3 0.1174 - - 2.03

Test Conditions:
DI Water Open Vent Mode
A = 2.22% UG = 14.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 14.00 20.2 0.1243 101.4 0.2 2.44
#2 Nitrogen 14.03 20.2 0.1215 99.2 0.1 1.81
#3 Nitrogen 14.08 20.1 0.1259 101.2 0.1 2.20
#1 Air 14.07 20.2 0.1248 -0.8 100.0 2.37
#2 Air 14.08 20.2 0.1296 0.6 100.0 2.17
#3 Air 14.03 20.1 0.1286 -0.4 99.7 1.82
#1 Carbon Monoxide 13.88 20.2 0.1287 100.0 0.2 2.44
#2 Carbon Monoxide 14.11 20.2 0.1297 99.5 0.1 2.16
#3 Carbon Monoxide 13.92 20.1 0.1235 100.1 0.1 1.59
#1 Air 14.08 20.2 0.1254 0.1 100.2 1.88
#2 Air 14.10 20.2 0.1270 0.2 99.9 1.78
#3 Air 14.04 20.1 0.1292 -0.1 100.2 2.33

14.03 20.2 0.1265 - - 2.08

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 13.88 20.2 0.1358 0.0 100.0
#2 14.11 20.2 0.1299 0.0 99.3
#3 13.92 20.1 0.1277 0.0 100.3

13.97 20.2 0.1311 - -

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide
Carbon Monoxide

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide
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Test Conditions:
DI Water Open Vent Mode
A = 2.22% UG = 16.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 15.96 20.6 0.1480 104.4 0.2 4.15
#2 Nitrogen 15.93 20.5 0.1307 100.9 0.2 2.26
#3 Nitrogen 16.08 20.2 0.1361 101.4 0.2 3.21
#1 Air 15.97 20.6 0.1330 0.8 100.0 1.65
#2 Air 16.03 20.5 0.1437 -0.1 99.8 2.39
#3 Air 16.06 20.2 0.1359 -1.6 99.9 2.23
#1 Carbon Monoxide 16.01 20.6 0.1324 100.3 0.1 2.06
#2 Carbon Monoxide 16.04 20.5 0.1368 99.9 0.2 2.57
#3 Carbon Monoxide 16.11 20.2 0.1363 100.3 0.2 2.38
#1 Air 15.97 20.6 0.1401 0.0 100.3 2.43
#2 Air 16.05 20.5 0.1406 -1.1 100.0 2.33
#3 Air 16.08 20.1 0.1328 -0.5 100.2 2.35

16.02 20.4 0.1372 - - 2.50

Test Conditions:
DI Water Open Vent Mode
A = 2.22% UG = 18.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 18.05 19.6 0.1359 100.1 0.1 2.35
#2 Nitrogen 17.99 20.5 0.1375 100.3 0.0 2.21
#3 Nitrogen 17.95 20.5 0.1392 99.0 0.1 2.21
#1 Air 18.07 19.6 0.1403 -1.1 100.0 2.22
#2 Air 17.98 20.6 0.1492 -1.0 99.6 2.84
#3 Air 17.95 20.5 0.1433 -0.9 99.9 2.43
#1 Carbon Monoxide 18.11 19.6 0.1330 98.5 0.1 1.71
#2 Carbon Monoxide 17.99 20.6 0.1329 100.1 0.0 1.82
#3 Carbon Monoxide 17.98 20.5 0.1410 99.6 0.0 2.31
#1 Air 18.09 19.5 0.1320 -0.1 99.6 1.88
#2 Air 17.99 20.6 0.1453 0.6 99.8 2.06
#3 Air 17.96 20.5 0.1437 -0.9 99.9 2.14

18.01 20.2 0.1395 - - 2.18

Oxygen Mass Transfer Data

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Test Inlet Gas

Average
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Test Conditions:
DI Water Open Vent Mode
A = 2.22% UG = 20.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 19.95 20.0 0.1375 99.6 0.1 2.25
#2 Nitrogen 19.97 20.3 0.1372 99.2 -0.1 2.21
#3 Nitrogen 19.81 20.3 0.1466 97.8 0.1 2.37
#1 Air 19.88 20.1 0.1570 -0.9 100.0 2.98
#2 Air 20.07 20.3 0.1525 0.5 100.1 2.13
#3 Air 19.99 20.3 0.1377 0.0 99.9 1.63
#1 Carbon Monoxide 19.93 20.1 0.1450 101.5 0.2 2.49
#2 Carbon Monoxide 20.02 20.3 0.1436 100.4 0.0 2.35
#3 Carbon Monoxide 20.04 20.3 0.1525 100.1 0.2 2.59
#1 Air 19.88 20.1 0.1544 -0.2 99.9 2.12
#2 Air 20.09 20.3 0.1547 -0.2 100.2 2.42
#3 Air 20.02 20.3 0.1594 0.6 99.8 2.42

19.97 20.2 0.1482 - - 2.33

Oxygen Mass Transfer Data

Test Inlet Gas

Average
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Test Conditions:
KCl Solution Open Vent Mode
A = 0.62% UG = 0.5 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 0.49 19.7 0.0073 99.3 -1.9 6.06
#2 Nitrogen 0.50 20.3 0.0079 99.4 -1.3 4.23
#3 Nitrogen 0.54 20.2 0.0083 99.0 -1.1 4.11
#1 Air 0.48 19.8 0.0073 0.6 101.7 2.61
#2 Air 0.50 20.4 0.0080 0.3 101.1 1.30
#3 Air 0.54 20.4 0.0085 0.4 100.7 1.97
#1 Carbon Monoxide 0.49 20.0 0.0075 99.3 -1.6 5.08
#2 Carbon Monoxide 0.50 20.5 0.0080 98.9 -1.2 4.48
#3 Carbon Monoxide 0.54 20.5 0.0085 99.3 -0.9 5.15
#1 Air 0.48 20.1 0.0075 0.5 101.3 3.21
#2 Air 0.50 20.6 0.0081 0.5 100.8 1.02
#3 Air 0.54 20.6 0.0085 0.3 100.7 2.13

0.51 20.3 0.0080 - - 3.45

Test Conditions:
KCl Solution Open Vent Mode
A = 0.62% UG = 2.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 2.03 20.1 0.0282 99.4 0.0 1.60
#2 Nitrogen 2.03 19.9 0.0281 99.2 0.0 1.81
#3 Nitrogen 2.03 19.5 0.0282 98.7 0.1 1.89
#1 Air 1.99 20.2 0.0281 0.4 100.1 1.53
#2 Air 2.02 19.9 0.0294 0.0 100.0 1.88
#3 Air 2.03 19.6 0.0287 0.0 100.1 1.83
#1 Carbon Monoxide 2.03 20.2 0.0285 100.0 0.0 2.59
#2 Carbon Monoxide 2.02 20.0 0.0287 99.3 0.2 1.49
#3 Carbon Monoxide 2.02 19.7 0.0287 99.5 0.1 1.79
#1 Air 1.99 20.3 0.0274 -0.6 99.7 1.93
#2 Air 2.03 20.1 0.0288 0.5 99.7 1.17
#3 Air 2.03 19.8 0.0291 0.6 99.9 1.54

2.02 19.9 0.0285 - - 1.75

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 2.03 20.2 0.0299 0.0 100.8
#2 2.02 20.0 0.0312 0.0 100.7
#3 2.02 19.7 0.0283 0.0 100.0

2.02 20.0 0.0298 - -
Carbon Monoxide

Average

Test Inlet Gas
Carbon Monoxide
Carbon Monoxide

Test Inlet Gas

Average

Carbon Monoxide Mass Transfer Data

Oxygen Mass Transfer Data

Oxygen Mass Transfer Data

Test Inlet Gas

Average
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Test Conditions:
KCl Solution Open Vent Mode
A = 0.62% UG = 4.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 4.02 20.7 0.0670 99.5 0.1 2.24
#2 Nitrogen 3.98 19.7 0.0632 99.3 0.2 1.86
#3 Nitrogen 3.97 20.3 0.0641 99.3 0.0 2.64
#1 Air 3.98 20.7 0.0714 0.3 100.2 3.48
#2 Air 3.98 19.7 0.0671 0.3 99.9 2.72
#3 Air 3.99 20.3 0.0672 -0.2 99.8 2.46
#1 Carbon Monoxide 4.02 20.7 0.0689 99.3 0.1 2.25
#2 Carbon Monoxide 3.99 19.8 0.0684 100.6 0.1 3.36
#3 Carbon Monoxide 3.97 20.3 0.0677 99.6 0.1 2.83
#1 Air 3.98 20.7 0.0692 -0.1 99.6 2.53
#2 Air 3.98 19.8 0.0685 2.2 99.9 2.35
#3 Air 3.99 20.4 0.0689 0.0 100.0 2.79

3.99 20.3 0.0676 - - 2.63

Test Conditions:
KCl Solution Open Vent Mode
A = 0.62% UG = 6.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 6.01 20.4 0.1042 99.6 0.2 3.13
#2 Nitrogen 5.98 20.3 0.1050 98.9 0.1 2.15
#3 Nitrogen 5.98 19.5 0.1037 98.7 0.2 2.17
#1 Air 6.02 20.5 0.1016 0.3 100.0 2.49
#2 Air 5.99 20.3 0.1092 0.5 99.9 2.77
#3 Air 5.97 19.6 0.1084 0.4 99.5 3.17
#1 Carbon Monoxide 5.93 20.5 0.1020 99.4 0.1 2.39
#2 Carbon Monoxide 6.00 20.3 0.1095 101.0 0.2 2.68
#3 Carbon Monoxide 5.97 19.7 0.1070 102.5 0.1 3.67
#1 Air 6.01 20.5 0.1024 1.1 99.8 2.17
#2 Air 5.99 20.4 - -0.6 99.9 3.35
#3 Air 5.97 19.7 0.1028 -0.9 99.6 2.23

5.99 20.2 0.1051 - - 2.70

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 5.93 20.5 0.1084 0.0 102.3
#2 6.00 20.3 0.0956 0.0 101.6
#3 5.97 19.7 0.1041 0.0 99.8

5.97 20.2 0.1027 - -

Carbon Monoxide
Carbon Monoxide

Average

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide

Oxygen Mass Transfer Data

Test Inlet Gas

Average
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Test Conditions:
KCl Solution Open Vent Mode
A = 0.62% UG = 8.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 8.04 20.5 - 100.9 0.1 2.58
#2 Nitrogen 8.01 19.9 0.1247 100.1 0.2 2.79
#3 Nitrogen 8.01 20.1 0.1218 99.2 0.1 2.67
#1 Air 8.02 20.5 0.1211 0.8 99.6 2.13
#2 Air 7.99 19.9 - -0.8 100.0 1.78
#3 Air 8.05 20.0 0.1227 -0.6 99.8 2.05
#1 Carbon Monoxide 8.09 20.5 0.1221 99.9 0.1 2.31
#2 Carbon Monoxide 8.03 19.9 0.1269 100.5 0.1 2.25
#3 Carbon Monoxide 8.02 20.2 0.1208 100.5 0.1 2.03
#1 Air 8.02 20.5 0.1255 -1.2 99.7 2.60
#2 Air 7.99 20.0 0.1205 0.9 100.0 2.19
#3 Air 8.05 20.1 0.1343 -0.8 99.9 2.87

8.03 20.2 0.1240 - - 2.35

Test Conditions:
KCl Solution Open Vent Mode
A = 0.62% UG = 10.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 10.02 19.7 0.1634 100.0 0.2 3.22
#2 Nitrogen 10.02 19.3 0.1447 99.8 0.2 2.40
#3 Nitrogen 10.00 20.2 0.1403 99.9 0.1 1.86
#1 Air 9.98 19.7 0.1417 -0.4 99.8 1.86
#2 Air 9.96 19.4 0.1554 -0.6 99.8 2.67
#3 Air 10.03 20.3 0.1497 2.8 99.8 2.36
#1 Carbon Monoxide 9.92 19.7 0.1559 100.2 0.3 2.87
#2 Carbon Monoxide 10.00 19.4 0.1441 98.4 -0.1 2.16
#3 Carbon Monoxide 10.01 20.2 0.1609 101.1 0.2 3.22
#1 Air 9.99 19.7 0.1482 -0.2 99.9 2.62
#2 Air 10.00 19.4 0.1462 0.6 99.8 2.46
#3 Air 10.05 20.3 0.1405 1.1 99.7 2.32

10.00 19.8 0.1493 - - 2.50

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 9.92 19.7 0.1550 0.0 101.1
#2 10.00 19.4 0.1426 0.0 101.2
#3 10.01 20.2 0.1547 0.0 100.5

9.98 19.8 0.1508 - -Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas

Inlet Gas

Average

Carbon Monoxide
Carbon Monoxide

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide

Oxygen Mass Transfer Data

Test 
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Test Conditions:
KCl Solution Open Vent Mode
A = 0.62% UG = 12.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 12.03 20.2 - 102.3 0.2 2.97
#2 Nitrogen 12.03 19.9 0.1777 101.3 0.3 3.01
#3 Nitrogen 12.00 20.1 0.1704 100.9 0.2 2.58
#1 Air 12.05 20.3 0.1521 -1.1 99.9 2.39
#2 Air 12.05 19.9 0.1915 -0.7 100.0 3.18
#3 Air 12.03 20.2 0.1598 1.8 100.0 2.26
#1 Carbon Monoxide 12.05 20.2 0.1414 99.5 0.1 2.38
#2 Carbon Monoxide 12.05 20.0 0.1671 99.4 0.2 2.23
#3 Carbon Monoxide 12.02 20.0 0.1658 99.0 0.1 2.40
#1 Air 12.06 20.2 0.1505 -0.4 99.7 1.99
#2 Air 12.05 20.0 0.1976 0.0 99.9 3.35
#3 Air 12.03 20.1 0.1876 -0.2 99.8 3.09

12.04 20.1 0.1692 - - 2.65

Test Conditions:
KCl Solution Open Vent Mode
A = 0.62% UG = 14.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 14.02 20.2 0.1860 101.6 0.3 2.94
#2 Nitrogen 14.05 20.1 0.1721 101.0 0.2 2.17
#3 Nitrogen 14.01 20.3 0.1664 99.9 0.2 2.14
#1 Air 14.01 20.2 0.1745 -1.3 99.7 2.08
#2 Air 14.02 20.1 0.1666 -0.9 99.7 1.72
#3 Air 13.99 20.3 0.1860 0.5 99.6 2.79
#1 Carbon Monoxide 13.99 20.2 0.1846 100.7 0.3 2.75
#2 Carbon Monoxide 14.00 20.1 0.1976 102.5 0.3 3.36
#3 Carbon Monoxide 14.00 20.3 0.1795 99.8 0.3 2.50
#1 Air 14.02 20.2 0.1603 -0.3 99.9 1.83
#2 Air 14.04 20.1 0.1810 -0.7 99.6 2.38
#3 Air 14.00 20.3 0.1653 -0.6 99.6 2.42

14.01 20.2 0.1767 - - 2.42

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 13.99 20.2 0.1555 0.0 98.2
#2 14.00 20.1 0.1816 0.0 98.3
#3 14.00 20.3 0.1810 0.0 100.0

14.00 20.2 0.1727 - -Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide

Inlet Gas

Average

Carbon Monoxide
Carbon Monoxide

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Oxygen Mass Transfer Data

Test 
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Test Conditions:
KCl Solution Open Vent Mode
A = 0.62% UG = 16.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 16.00 20.1 0.1710 100.6 0.3 3.01
#2 Nitrogen 16.01 19.8 - 101.6 0.4 3.92
#3 Nitrogen 16.01 20.2 0.1593 100.7 0.2 2.26
#1 Air 16.02 20.2 0.1661 1.4 99.8 2.21
#2 Air 16.08 19.8 0.1631 0.5 99.9 1.85
#3 Air 16.01 20.2 0.1763 1.1 99.6 2.50
#1 Carbon Monoxide 16.00 20.1 0.1631 99.3 0.2 2.35
#2 Carbon Monoxide 16.09 19.8 0.1770 101.2 0.3 2.81
#3 Carbon Monoxide 16.05 20.2 0.1749 99.9 0.2 2.23
#1 Air 16.05 20.1 0.1725 -0.7 100.1 2.05
#2 Air 16.09 19.8 0.1681 -1.1 99.5 1.94
#3 Air 16.02 20.2 0.1679 -0.1 100.0 1.93

16.04 20.1 0.1690 - - 2.42

Test Conditions:
KCl Solution Open Vent Mode
A = 0.62% UG = 18.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 17.98 20.4 0.1645 99.9 0.3 2.09
#2 Nitrogen 17.98 20.2 0.1727 100.7 0.3 2.87
#3 Nitrogen 18.06 20.1 0.1638 100.0 0.3 2.53
#1 Air 18.05 20.4 0.1599 -0.1 99.9 1.66
#2 Air 18.01 20.2 0.1704 0.6 99.8 2.20
#3 Air 18.02 20.1 0.1622 0.4 100.0 2.22
#1 Carbon Monoxide 18.04 20.4 0.1894 100.7 0.4 3.16
#2 Carbon Monoxide 18.05 20.2 0.1679 101.8 0.3 2.34
#3 Carbon Monoxide 18.06 20.1 0.1760 101.3 0.3 2.83
#1 Air 18.06 20.4 0.1717 0.1 99.9 2.42
#2 Air 18.04 20.2 0.1802 -0.1 99.7 2.50
#3 Air 18.03 20.1 0.1763 0.9 99.7 2.62

18.03 20.3 0.1712 - - 2.45

Test Inlet Gas

Average

Oxygen Mass Transfer Data

Oxygen Mass Transfer Data

Test Inlet Gas

Average
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Test Conditions:
KCl Solution Open Vent Mode
A = 0.62% UG = 20.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 20.00 20.5 - 100.8 0.4 4.04
#2 Nitrogen 20.05 20.1 0.1713 101.3 0.2 2.34
#3 Nitrogen 20.06 20.2 - 123.7 0.2 5.90
#1 Air 20.07 20.5 0.1947 0.8 99.5 2.76
#2 Air 20.06 20.1 0.1770 1.2 99.6 2.09
#3 Air 20.13 20.2 0.1877 -0.8 99.6 2.78
#1 Carbon Monoxide 20.06 20.4 0.1768 100.2 0.2 2.51
#2 Carbon Monoxide 20.01 20.1 0.1753 100.3 0.3 2.35
#3 Carbon Monoxide 20.09 20.2 0.1814 100.8 0.2 2.56
#1 Air 20.10 20.4 0.1751 -0.8 99.7 2.36
#2 Air 20.08 20.1 0.1769 -0.3 100.0 2.17
#3 Air 20.16 20.2 0.1837 -0.7 99.6 2.57

20.07 20.2 0.1800 - - 2.87

Oxygen Mass Transfer Data

Test Inlet Gas

Average
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Test Conditions:
Nitrosomonas Solution Open Vent Mode
A = 0.62% UG = 0.5 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 0.51 19.8 0.0076 99.4 -1.4 3.39
#2 Nitrogen 0.52 20.1 0.0077 99.5 -1.4 4.14
#3 Nitrogen 0.50 19.9 0.0077 99.8 -1.4 4.48
#1 Air 0.51 20.0 0.0077 98.9 -1.3 2.90
#2 Air 0.50 20.3 0.0080 98.9 -1.1 3.22
#3 Air 0.51 20.0 0.0080 99.5 -1.2 5.41
#1 Carbon Monoxide 0.51 20.1 0.0077 98.9 -1.3 4.28
#2 Carbon Monoxide 0.52 20.4 0.0078 99.2 -1.2 3.00
#3 Carbon Monoxide 0.50 20.0 0.0078 99.3 -1.2 2.68
#1 Air 0.51 20.2 0.0077 0.7 101.3 2.51
#2 Air 0.50 20.6 0.0078 0.6 101.1 2.26
#3 Air 0.51 20.2 0.0081 0.4 100.9 1.59

0.51 20.1 0.0078 - - 3.32

Test Conditions:
Nitrosomonas Solution Open Vent Mode
A = 0.62% UG = 2.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 1.98 20.3 0.0255 99.5 0.1 1.90
#2 Nitrogen 2.01 20.4 0.0262 99.6 0.1 2.12
#3 Nitrogen 2.00 20.0 0.0280 100.1 0.1 2.06
#1 Air 1.96 20.4 0.0255 0.4 99.8 1.23
#2 Air 1.96 20.4 0.0283 1.0 100.6 2.48
#3 Air 1.99 20.1 0.0281 0.5 99.8 1.82
#1 Carbon Monoxide 1.99 20.4 0.0275 102.2 0.1 8.58
#2 Carbon Monoxide 2.01 20.4 0.0265 99.6 0.0 1.88
#3 Carbon Monoxide 2.02 20.1 0.0284 100.0 0.0 2.03
#1 Air 1.96 20.5 0.0259 0.1 100.0 0.99
#2 Air 1.96 20.4 0.0279 0.4 100.2 1.67
#3 Air 1.99 20.3 0.0281 0.8 102.0 1.41

1.99 20.3 0.0272 - - 2.35

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 1.99 20.4 0.0255 0.0 103.1
#2 2.01 20.4 0.0257 0.0 103.2
#3 2.02 20.1 0.0286 0.0 101.8

2.01 20.3 0.0266 - -

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Test Inlet Gas

Average

Carbon Monoxide Mass Transfer Data

Test 

Oxygen Mass Transfer Data

Inlet Gas
Carbon Monoxide
Carbon Monoxide
Carbon Monoxide

Average
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Test Conditions:
Nitrosomonas Solution Open Vent Mode
A = 0.62% UG = 4.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 3.98 20.4 0.0607 100.9 0.0 3.00
#2 Nitrogen 4.04 19.6 0.0608 98.7 0.1 2.26
#3 Nitrogen 4.02 20.2 0.0636 100.5 0.1 2.74
#1 Air 4.01 20.4 0.0631 -0.3 99.7 2.54
#2 Air 4.02 19.6 0.0652 0.3 100.0 2.53
#3 Air 3.99 20.2 0.0634 1.2 99.8 2.13
#1 Carbon Monoxide 3.99 20.4 0.0645 99.7 0.0 2.66
#2 Carbon Monoxide 4.05 19.9 0.0633 98.7 0.1 1.96
#3 Carbon Monoxide 4.03 20.2 - 135.0 0.1 14.94
#1 Air 4.01 20.5 0.0641 -0.3 99.9 2.51
#2 Air 4.02 19.9 0.0673 0.3 99.9 2.47
#3 Air 3.99 20.3 0.0642 -0.3 100.3 2.16

4.01 20.1 0.0637 - - 3.49

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 3.99 20.4 0.0678 0.0 99.8
#2 4.05 19.9 0.0667 0.0 99.9
#3 4.03 20.2 0.0723 0.0 98.9

4.02 20.2 0.0689 - -

Test Conditions:
Nitrosomonas Solution Open Vent Mode
A = 0.62% UG = 6.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 5.99 20.1 0.0985 98.9 0.2 2.54
#2 Nitrogen 5.99 21.0 0.1069 100.8 0.2 2.94
#3 Nitrogen 6.00 20.5 0.1003 99.9 0.1 2.62
#1 Air 5.98 20.2 0.0992 -1.2 99.9 2.86
#2 Air 5.98 21.1 0.1078 1.1 99.6 2.10
#3 Air 6.01 20.5 0.1002 0.3 99.8 2.22
#1 Carbon Monoxide 6.04 20.2 0.0986 100.6 0.1 1.89
#2 Carbon Monoxide 6.04 21.1 0.1038 100.1 0.1 2.58
#3 Carbon Monoxide 5.97 20.5 0.1047 100.9 0.2 2.49
#1 Air 5.98 20.2 0.1138 111.7 -0.6 8.78
#2 Air 5.98 21.1 0.1054 99.3 0.2 2.57
#3 Air 6.01 20.5 0.1026 100.9 0.2 2.46

6.00 20.6 0.1035 - - 3.00

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 6.04 20.2 0.1059 0.0 100.5
#2 6.04 21.1 0.0944 0.0 100.9
#3 5.97 20.5 0.0934 0.0 101.3

6.02 20.6 0.0979 - -

Carbon Monoxide
Carbon Monoxide

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Average

Oxygen Mass Transfer Data

Test Inlet Gas

Carbon Monoxide
Carbon Monoxide

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide
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Test Conditions:
Nitrosomonas Solution Open Vent Mode
A = 0.62% UG = 8.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 8.02 20.4 0.1207 99.0 -0.3 2.79
#2 Nitrogen 8.01 20.3 0.1207 101.2 0.2 2.95
#3 Nitrogen 8.04 19.9 0.1210 100.3 0.1 2.33
#1 Air 8.05 20.4 0.1294 0.4 100.1 2.99
#2 Air 8.02 20.3 0.1352 0.4 99.7 3.34
#3 Air 8.03 19.9 0.1296 0.2 100.1 2.24
#1 Carbon Monoxide 8.03 20.4 0.1150 99.7 -0.6 2.17
#2 Carbon Monoxide 8.03 20.3 0.1168 99.3 0.1 2.02
#3 Carbon Monoxide 8.04 19.9 0.1267 99.3 0.2 2.72
#1 Air 8.06 20.4 0.1256 0.2 100.0 2.55
#2 Air 8.02 20.4 0.1270 -0.8 99.9 2.83
#3 Air 8.04 19.9 0.1259 0.5 100.0 2.16

8.03 20.2 0.1245 - - 2.59

Test Conditions:
Nitrosomonas Solution Open Vent Mode
A = 0.62% UG = 10.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 9.95 20.2 0.1443 98.7 -0.1 2.52
#2 Nitrogen 9.99 20.3 0.1417 98.7 0.3 2.53
#3 Nitrogen 10.07 20.0 0.1414 97.3 0.2 2.04
#1 Air 10.02 20.2 0.1531 1.0 100.0 2.30
#2 Air 10.03 20.3 0.1605 -0.1 100.2 3.14
#3 Air 10.06 20.0 0.1455 -0.3 100.2 2.54
#1 Carbon Monoxide 10.02 20.2 0.1733 101.2 0.3 3.92
#2 Carbon Monoxide 10.04 20.3 0.1559 100.2 0.1 3.16
#3 Carbon Monoxide 10.11 19.9 0.1431 98.9 0.1 2.45
#1 Air 10.05 20.2 0.1616 1.4 99.8 3.22
#2 Air 10.05 20.3 0.1490 0.7 99.9 2.16
#3 Air 10.06 19.9 0.1468 2.3 99.8 2.44

10.04 20.1 0.1514 - - 2.70

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 10.02 20.2 0.1704 0.0 99.9
#2 10.04 20.3 0.1715 0.0 100.5
#3 10.11 19.9 0.1770 0.0 100.8

10.06 20.1 0.1730 - -Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas

Inlet Gas

Average

Carbon Monoxide
Carbon Monoxide

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide

Oxygen Mass Transfer Data

Test 

 



www.manaraa.com

 343

Test Conditions:
Nitrosomonas Solution Open Vent Mode
A = 0.62% UG = 12.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 11.98 20.3 0.1844 102.1 0.4 3.79
#2 Nitrogen 12.02 19.6 0.1616 100.2 0.1 2.34
#3 Nitrogen 11.96 19.6 0.1737 98.3 0.2 2.89
#1 Air 12.06 20.3 0.1664 -0.7 100.1 2.56
#2 Air 12.01 19.7 0.1567 -1.4 99.8 2.03
#3 Air 12.03 19.6 - 1.3 99.7 4.37
#1 Carbon Monoxide 12.02 20.3 0.1800 101.1 0.2 3.19
#2 Carbon Monoxide 11.97 19.7 0.1548 100.0 0.0 2.18
#3 Carbon Monoxide 12.00 19.7 0.1783 100.8 0.2 2.92
#1 Air 12.06 20.3 0.1799 -0.2 100.0 3.12
#2 Air 12.02 19.7 0.1529 1.3 99.8 1.75
#3 Air 12.04 19.7 - -0.8 99.8 4.33

12.02 19.9 0.1689 - - 2.96

Test Conditions:
Nitrosomonas Solution Open Vent Mode
A = 0.62% UG = 14.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 14.07 20.1 0.1634 99.8 0.2 1.71
#2 Nitrogen 14.02 20.3 0.1739 101.5 0.2 2.55
#3 Nitrogen 14.06 20.3 0.1708 99.3 0.2 2.26
#1 Air 14.17 20.2 0.1864 -0.2 99.7 2.50
#2 Air 13.99 20.3 0.1852 0.3 99.8 2.35
#3 Air 13.99 20.3 0.1764 0.7 99.8 1.83
#1 Carbon Monoxide 14.11 20.2 0.1712 97.3 0.2 2.21
#2 Carbon Monoxide 13.89 20.3 0.1859 99.8 0.3 2.80
#3 Carbon Monoxide 13.97 20.3 0.1790 100.6 0.2 2.69
#1 Air 14.11 20.2 0.1668 -2.0 99.8 2.12
#2 Air 14.01 20.3 0.1784 -0.9 100.0 2.18
#3 Air 14.02 20.3 0.1892 -0.8 99.7 2.59

14.03 20.3 0.1772 - - 2.31

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 14.11 20.2 0.1616 0.0 100.1
#2 13.89 20.3 0.1821 0.0 100.3
#3 13.97 20.3 0.1897 0.0 98.9

13.99 20.3 0.1778 - -Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide

Inlet Gas

Average

Carbon Monoxide
Carbon Monoxide

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Oxygen Mass Transfer Data

Test 
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Test Conditions:
Nitrosomonas Solution Open Vent Mode
A = 0.62% UG = 16.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 16.00 19.8 0.1746 100.4 0.2 2.36
#2 Nitrogen 16.07 20.5 0.1805 100.9 0.3 2.52
#3 Nitrogen 16.07 20.7 0.1565 100.6 0.2 2.09
#1 Air 16.03 19.8 0.1735 0.6 99.9 1.91
#2 Air 16.02 20.5 0.1944 0.1 99.8 2.79
#3 Air 16.12 20.7 0.1763 -0.8 99.8 2.21
#1 Carbon Monoxide 16.07 19.9 0.1892 100.4 0.2 2.82
#2 Carbon Monoxide 16.06 20.5 0.1776 97.6 0.2 2.05
#3 Carbon Monoxide 16.04 20.7 0.1720 100.5 0.2 2.37
#1 Air 16.03 19.9 0.1900 -0.4 99.6 2.56
#2 Air 16.02 20.6 - -0.3 100.1 4.00
#3 Air 16.08 20.7 0.1851 0.0 99.9 2.48

16.05 20.4 0.1791 - - 2.51

Test Conditions:
Nitrosomonas Solution Open Vent Mode
A = 0.62% UG = 18.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 18.00 19.9 - 101.2 0.1 2.23
#2 Nitrogen 18.02 20.2 - 99.4 0.1 2.01
#3 Nitrogen 17.95 20.0 0.1705 100.7 0.1 2.33
#1 Air 18.01 20.0 0.1941 -0.1 99.5 3.13
#2 Air 17.98 20.2 0.2093 -1.4 99.4 3.32
#3 Air 18.00 19.9 0.1912 0.1 99.8 2.47
#1 Carbon Monoxide 18.02 19.9 - 99.9 0.0 2.03
#2 Carbon Monoxide 18.00 20.1 0.1803 100.9 0.3 2.39
#3 Carbon Monoxide 17.96 19.9 0.1851 100.4 0.3 2.59
#1 Air 18.07 19.9 0.1882 -1.6 100.0 2.84
#2 Air 18.00 20.1 0.1700 0.9 99.8 1.94
#3 Air 18.02 19.9 0.1933 -1.2 99.8 2.85

18.00 20.0 0.1869 - - 2.51

Test Inlet Gas

Average

Oxygen Mass Transfer Data

Oxygen Mass Transfer Data

Test Inlet Gas

Average
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Test Conditions:
Nitrosomonas Solution Open Vent Mode
A = 0.62% UG = 20.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 20.04 20.2 0.1920 100.1 0.2 3.12
#2 Nitrogen 20.00 20.4 0.1778 100.5 0.3 2.75
#3 Nitrogen 20.04 20.0 - 102.3 0.3 5.52
#1 Air 20.15 20.2 0.1888 -0.6 99.9 2.35
#2 Air 20.05 20.4 0.1685 0.1 100.1 2.02
#3 Air 20.09 20.1 0.1849 -0.3 99.8 2.20
#1 Carbon Monoxide 20.00 20.2 0.1957 102.0 0.4 2.99
#2 Carbon Monoxide 20.05 20.4 0.1842 101.6 0.3 2.54
#3 Carbon Monoxide 20.07 20.0 0.1825 99.9 0.2 2.50
#1 Air 20.07 20.2 - -0.5 99.7 3.93
#2 Air 20.05 20.4 0.2091 0.1 99.6 2.94
#3 Air 20.00 20.0 0.1888 1.8 99.8 2.60

20.05 20.2 0.1872 - - 2.96

Oxygen Mass Transfer Data

Test Inlet Gas

Average
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Test Conditions:
DI Water w/ Surfactant Open Vent Mode
A = 0.62% UG = 0.5 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 0.52 20.8 0.0050 98.8 0.0 4.36
#2 Nitrogen 0.52 20.5 0.0052 98.6 0.0 5.33
#3 Nitrogen 0.52 20.7 0.0052 98.5 -0.1 4.69
#1 Air 0.52 20.8 0.0050 0.6 99.5 3.82
#2 Air 0.52 20.5 0.0052 0.9 100.0 6.51
#3 Air 0.52 20.7 0.0048 0.4 99.0 1.69
#1 Carbon Monoxide 0.52 20.8 0.0050 98.6 -0.1 4.53
#2 Carbon Monoxide 0.52 20.5 0.0051 99.2 -0.2 3.17
#3 Carbon Monoxide 0.52 20.7 0.0051 98.6 -0.1 4.63
#1 Air 0.52 20.8 0.0053 1.3 99.9 6.52
#2 Air 0.52 20.5 0.0053 0.8 99.7 5.48
#3 Air 0.52 20.7 0.0050 0.9 99.3 2.03

0.52 20.7 0.0051 - - 4.40

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 0.52 20.8 0.0056 -12.7 96.0
#2 0.52 20.5 0.0056 -8.2 97.7
#3 0.52 20.7 0.0060 -13.0 100.1

0.52 20.7 0.0057 - -

Test Conditions:
DI Water w/ Surfactant Open Vent Mode
A = 0.62% UG = 2.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 2.06 20.6 0.0112 99.4 0.1 2.37
#2 Nitrogen 2.06 20.3 0.0113 99.0 0.0 2.04
#3 Nitrogen 2.06 19.9 0.0112 98.7 0.0 2.15
#1 Air 2.06 20.6 0.0110 0.4 99.1 0.95
#2 Air 2.06 20.3 0.0112 0.5 99.5 1.27
#3 Air 2.06 19.9 0.0110 0.5 99.6 1.27
#1 Carbon Monoxide 2.06 20.6 0.0115 98.9 0.0 2.29
#2 Carbon Monoxide 2.06 20.3 0.0116 101.7 0.1 8.15
#3 Carbon Monoxide 2.06 19.9 0.0114 99.1 0.0 2.06
#1 Air 2.06 20.6 0.0117 0.8 99.5 1.91
#2 Air 2.06 20.3 0.0114 0.6 99.6 1.92
#3 Air 2.06 19.9 0.0112 0.9 99.7 1.55

2.06 20.3 0.0113 - - 2.33

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 2.06 20.6 0.0134 -15.3 105.3
#2 2.06 20.3 0.0115 6.6 104.6
#3 2.06 19.9 0.0133 -9.9 105.1

2.06 20.3 0.0127 - -
Carbon Monoxide

Average

Test Inlet Gas
Carbon Monoxide
Carbon Monoxide

Test Inlet Gas

Average

Carbon Monoxide Mass Transfer Data

Oxygen Mass Transfer Data

Average

Carbon Monoxide
Carbon Monoxide
Carbon Monoxide

Inlet Gas

Oxygen Mass Transfer Data

Test Inlet Gas

Test 

Average

Carbon Monoxide Mass Transfer Data
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Test Conditions:
DI Water w/ Surfactant Open Vent Mode
A = 0.62% UG = 4.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 4.02 19.6 0.0193 98.7 0.0 2.47
#2 Nitrogen 4.01 20.2 0.0194 99.3 0.0 2.85
#3 Nitrogen 4.00 20.4 0.0194 99.0 0.1 2.95
#1 Air 4.02 19.6 0.0203 0.9 99.8 2.11
#2 Air 4.01 20.2 0.0207 0.8 100.1 1.86
#3 Air 4.00 20.4 0.0206 0.8 100.0 1.69
#1 Carbon Monoxide 4.02 19.6 0.0207 98.5 -0.5 2.80
#2 Carbon Monoxide 4.01 20.2 0.0209 98.2 -0.4 2.78
#3 Carbon Monoxide 4.00 20.4 0.0245 103.3 -0.1 9.78
#1 Air 4.02 19.6 0.0197 1.2 100.0 2.39
#2 Air 4.01 20.2 0.0201 0.7 100.4 2.32
#3 Air 4.00 20.4 0.0204 0.7 100.1 1.96

4.01 20.1 0.0205 - - 3.00

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 4.02 19.6 0.0253 -18.3 96.2
#2 4.01 20.2 0.0219 -10.4 100.3
#3 4.00 20.4 0.0250 -19.7 100.4

4.01 20.1 0.0241 - -

Test Conditions:
DI Water w/ Surfactant Open Vent Mode
A = 0.62% UG = 6.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 6.00 19.5 0.0279 98.9 0.1 2.18
#2 Nitrogen 5.99 20.0 0.0281 98.9 0.0 2.64
#3 Nitrogen 5.97 20.3 0.0287 99.1 0.0 2.03
#1 Air 6.00 19.5 0.0273 1.2 99.3 2.11
#2 Air 5.99 20.0 0.0280 1.4 99.8 1.98
#3 Air 5.97 20.3 0.0284 0.9 99.9 2.54
#1 Carbon Monoxide 6.00 19.5 0.0284 99.0 0.1 2.00
#2 Carbon Monoxide 5.99 20.0 0.0288 99.2 0.0 2.35
#3 Carbon Monoxide 5.97 20.3 0.0289 99.0 0.0 2.14
#1 Air 6.00 19.5 0.0280 1.0 99.9 1.91
#2 Air 5.99 20.0 0.0283 1.5 99.8 1.90
#3 Air 5.97 20.3 0.0285 0.9 99.8 1.93

5.99 19.9 0.0283 - - 2.14

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 6.00 19.5 0.0298 0.1 101.4
#2 5.99 20.0 0.0275 -6.5 101.9
#3 5.97 20.3 0.0287 -5.3 100.5

5.99 19.9 0.0287 - -

Carbon Monoxide
Carbon Monoxide

Average

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide

Carbon Monoxide
Carbon Monoxide

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide

Oxygen Mass Transfer Data

Test Inlet Gas

Average
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Test Conditions:
DI Water w/ Surfactant Open Vent Mode
A = 0.62% UG = 8.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 8.02 20.1 0.0377 99.3 0.0 1.92
#2 Nitrogen 8.02 20.2 0.0384 99.3 0.0 1.92
#3 Nitrogen 7.99 20.1 0.0384 99.1 0.1 2.08
#1 Air 8.02 20.1 0.0376 1.1 99.7 2.22
#2 Air 8.02 20.2 0.0397 1.3 100.3 2.36
#3 Air 7.99 20.1 0.0392 0.9 100.0 1.81
#1 Carbon Monoxide 8.02 20.1 0.0387 98.6 0.0 2.35
#2 Carbon Monoxide 8.02 20.2 0.0394 99.0 0.0 2.17
#3 Carbon Monoxide 7.99 20.1 0.0390 99.1 0.0 1.89
#1 Air 8.02 20.1 0.0381 0.8 100.1 2.41
#2 Air 8.02 20.2 0.0404 0.7 100.2 2.29
#3 Air 7.99 20.1 0.0395 0.9 100.0 1.48

8.01 20.1 0.0388 - - 2.08

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 8.02 20.1 0.0489 -26.5 99.0
#2 8.02 20.2 0.0421 -3.2 102.2
#3 7.99 20.1 - - -

8.01 20.1 0.0455 - -

Test Conditions:
DI Water w/ Surfactant Open Vent Mode
A = 0.62% UG = 12.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 11.95 20.1 0.0550 99.2 0.0 1.59
#2 Nitrogen 11.98 19.8 0.0533 98.7 0.0 1.45
#3 Nitrogen 11.95 19.3 0.0530 98.5 0.0 1.79
#1 Air 11.95 20.1 0.0556 2.0 100.1 1.83
#2 Air 11.98 19.8 0.0547 0.5 100.0 1.26
#3 Air 11.95 19.3 0.0549 1.0 100.0 1.65
#1 Carbon Monoxide 11.95 20.1 0.0550 98.6 0.0 1.72
#2 Carbon Monoxide 11.98 19.8 0.0554 98.7 0.0 1.91
#3 Carbon Monoxide 11.95 19.3 0.0554 99.3 0.0 1.81
#1 Air 11.95 20.1 0.0552 1.1 100.0 1.72
#2 Air 11.98 19.8 0.0552 0.8 99.9 1.43
#3 Air 11.95 19.3 0.0557 0.9 100.2 2.11

11.96 19.7 0.0549 - - 1.69

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 11.95 20.1 0.0449 5.4 108.6
#2 11.98 19.8 0.0747 -33.5 95.8
#3 11.95 19.3 0.0682 -28.1 98.8

11.96 19.7 0.0626 - -

Carbon Monoxide
Carbon Monoxide

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide
Carbon Monoxide
Carbon Monoxide

Average

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
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Test Conditions:
DI Water w/ Surfactant Open Vent Mode
A = 0.62% UG = 16.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 16.03 19.9 0.0690 98.7 0.0 1.68
#2 Nitrogen 15.99 20.2 0.0695 99.5 0.4 1.78
#3 Nitrogen 16.06 19.7 0.0713 99.2 0.1 2.03
#1 Air 16.03 19.9 0.0750 1.3 100.4 1.76
#2 Air 15.99 20.2 0.0707 1.3 99.7 1.28
#3 Air 16.06 19.7 0.0727 1.9 99.7 1.82
#1 Carbon Monoxide 16.03 19.9 0.0707 98.9 0.0 1.53
#2 Carbon Monoxide 15.99 20.2 0.0706 99.1 0.2 1.82
#3 Carbon Monoxide 16.06 19.7 0.0725 99.2 0.1 1.82
#1 Air 16.03 19.9 0.0726 0.4 100.3 1.76
#2 Air 15.99 20.2 0.0716 1.4 99.7 1.30
#3 Air 16.06 19.7 0.0727 6.4 99.9 2.64

16.03 19.9 0.0716 - - 1.77

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 16.03 19.9 0.0741 -14.7 103.3
#2 15.99 20.2 0.0871 -23.9 96.7
#3 16.06 19.7 0.0814 -21.1 98.8

16.03 19.9 0.0808 - -

Test Conditions:
DI Water w/ Surfactant Open Vent Mode
A = 0.62% UG = 20.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 19.47 19.3 0.0829 99.0 0.0 1.57
#2 Nitrogen 20.09 19.6 0.0837 98.6 0.0 1.47
#3 Nitrogen 20.04 19.9 0.0829 98.6 0.0 2.04
#1 Air 19.47 19.3 0.0872 1.7 100.1 1.96
#2 Air 20.09 19.6 0.0856 1.7 100.2 1.29
#3 Air 20.04 19.9 0.0883 1.8 100.9 2.06
#1 Carbon Monoxide 19.47 19.3 0.0833 99.2 0.0 1.64
#2 Carbon Monoxide 20.09 19.6 0.0867 99.0 0.0 2.14
#3 Carbon Monoxide 20.04 19.9 0.0844 99.0 0.0 1.94
#1 Air 19.47 19.3 0.0862 1.1 100.2 1.67
#2 Air 20.09 19.6 0.0867 1.3 100.2 1.75
#3 Air 20.04 19.9 0.0856 1.4 100.3 1.85

19.87 19.6 0.0853 - - 1.78

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 19.47 19.3 0.0937 -26.7 102.6
#2 20.09 19.6 0.0890 -28.7 105.0
#3 20.04 19.9 0.1044 -33.0 99.9

19.87 19.6 0.0957 - -

Carbon Monoxide
Carbon Monoxide

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide
Carbon Monoxide
Carbon Monoxide

Average

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
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Test Conditions:
DI Water w/ Surfactant Closed Vent Mode
A = 0.62% UG = 0.5 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 0.48 21.0 0.0058 99.2 0.0 6.52
#2 Nitrogen 0.50 20.5 0.0055 99.6 0.0 0.10
#3 Nitrogen 0.50 21.4 0.0058 99.0 0.1 2.93
#1 Air 0.48 21.0 0.0059 0.8 99.6 6.24
#2 Air 0.50 20.5 0.0055 0.6 99.5 3.14
#3 Air 0.50 21.4 0.0058 0.4 99.3 2.30
#1 Carbon Monoxide 0.48 21.0 0.0062 99.5 0.0 5.64
#2 Carbon Monoxide 0.50 20.5 0.0056 99.4 0.0 4.44
#3 Carbon Monoxide 0.50 21.4 0.0059 99.4 0.1 4.50
#1 Air 0.48 21.0 0.0059 0.5 99.8 3.66
#2 Air 0.50 20.5 0.0056 0.7 99.8 3.09
#3 Air 0.50 21.4 0.0059 0.6 99.5 2.80

0.49 21.0 0.0058 - - 3.78

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 0.48 21.0 0.0058 -4.6 104.3
#2 0.50 20.5 0.0062 -13.1 98.2
#3 0.50 21.4 0.0060 -10.0 101.1

0.49 21.0 0.0060 - -

Test Conditions:
DI Water w/ Surfactant Closed Vent Mode
A = 0.62% UG = 2.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 2.01 20.7 0.0135 99.6 0.1 2.13
#2 Nitrogen 2.02 20.3 0.0131 99.4 0.1 1.23
#3 Nitrogen 2.01 20.7 0.0124 99.5 0.1 1.15
#1 Air 2.01 20.7 0.0133 0.4 99.5 1.64
#2 Air 2.02 20.3 0.0133 0.6 99.6 1.80
#3 Air 2.01 20.7 0.0124 0.6 99.7 1.96
#1 Carbon Monoxide 2.01 20.7 0.0134 93.3 0.1 8.33
#2 Carbon Monoxide 2.02 20.3 0.0131 99.5 0.1 1.76
#3 Carbon Monoxide 2.01 20.7 0.0123 99.5 0.1 1.16
#1 Air 2.01 20.7 0.0134 0.8 99.5 1.88
#2 Air 2.02 20.3 0.0124 3.7 99.2 0.00
#3 Air 2.01 20.7 0.0123 0.7 99.8 2.14

2.01 20.6 0.0129 - - 2.10

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 2.01 20.7 0.0142 -1.9 101.4
#2 2.02 20.3 0.0130 -7.5 106.7
#3 2.01 20.7 0.0107 -1.0 101.1

2.01 20.6 0.0126 - -
Carbon Monoxide

Average

Test Inlet Gas
Carbon Monoxide
Carbon Monoxide

Test Inlet Gas

Average

Carbon Monoxide Mass Transfer Data

Oxygen Mass Transfer Data

Average

Carbon Monoxide
Carbon Monoxide
Carbon Monoxide

Inlet Gas

Oxygen Mass Transfer Data

Test Inlet Gas

Test 

Average

Carbon Monoxide Mass Transfer Data
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Test Conditions:
DI Water w/ Surfactant Closed Vent Mode
A = 0.62% UG = 4.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 3.99 19.6 0.0205 99.4 0.1 2.27
#2 Nitrogen 4.04 19.7 0.0206 99.6 0.1 1.77
#3 Nitrogen 3.99 20.6 0.0205 99.1 0.1 1.83
#1 Air 3.99 19.6 0.0202 0.8 99.8 1.90
#2 Air 4.04 19.7 0.0205 0.4 99.4 1.75
#3 Air 3.99 20.6 0.0205 0.7 99.6 2.09
#1 Carbon Monoxide 3.99 19.6 0.0207 99.3 0.1 2.45
#2 Carbon Monoxide 4.04 19.7 0.0204 99.8 0.0 0.48
#3 Carbon Monoxide 3.99 20.6 0.0207 99.6 0.1 2.10
#1 Air 3.99 19.6 0.0204 0.5 99.7 1.41
#2 Air 4.04 19.7 0.0208 0.4 99.7 1.29
#3 Air 3.99 20.6 0.0203 0.4 99.7 1.60

4.01 20.0 0.0205 - - 1.75

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 3.99 19.6 0.0229 -16.4 99.7
#2 4.04 19.7 0.0235 -17.3 99.7
#3 3.99 20.6 0.0213 -15.6 103.3

4.01 20.0 0.0226 - -

Test Conditions:
DI Water w/ Surfactant Closed Vent Mode
A = 0.62% UG = 6.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 5.96 20.1 0.0290 98.9 0.1 1.56
#2 Nitrogen 5.97 20.0 0.0287 99.0 0.1 2.17
#3 Nitrogen 5.98 19.8 0.0289 99.6 0.1 2.60
#1 Air 5.96 20.1 0.0290 1.1 99.8 1.84
#2 Air 5.97 20.0 0.0289 0.6 99.8 2.27
#3 Air 5.98 19.8 0.0297 0.6 99.9 2.18
#1 Carbon Monoxide 5.96 20.1 0.0294 98.9 0.0 2.10
#2 Carbon Monoxide 5.97 20.0 0.0292 99.1 0.0 2.17
#3 Carbon Monoxide 5.98 19.8 0.0292 99.3 0.1 2.18
#1 Air 5.96 20.1 0.0287 0.7 100.1 1.34
#2 Air 5.97 20.0 0.0284 0.7 99.7 1.69
#3 Air 5.98 19.8 0.0299 0.6 99.9 1.92

5.97 20.0 0.0291 - - 2.00

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 5.96 20.1 0.0338 -20.0 102.4
#2 5.97 20.0 0.0306 -9.7 100.9
#3 5.98 19.8 0.0411 -42.4 98.8

5.97 20.0 0.0352 - -

Carbon Monoxide
Carbon Monoxide

Average

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide

Carbon Monoxide
Carbon Monoxide

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide

Oxygen Mass Transfer Data

Test Inlet Gas

Average
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Test Conditions:
DI Water w/ Surfactant Closed Vent Mode
A = 0.62% UG = 8.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 8.08 20.1 0.0368 99.2 0.1 2.21
#2 Nitrogen 8.01 19.8 0.0361 99.0 0.1 2.07
#3 Nitrogen 7.98 19.8 0.0365 98.7 0.1 2.78
#1 Air 8.08 20.1 0.0373 0.4 99.9 2.15
#2 Air 8.01 19.8 0.0368 0.9 99.8 1.71
#3 Air 7.98 19.8 0.0374 1.2 99.4 1.90
#1 Carbon Monoxide 8.08 20.1 0.0367 99.2 0.1 2.00
#2 Carbon Monoxide 8.01 19.8 0.0367 98.8 0.1 2.67
#3 Carbon Monoxide 7.98 19.8 0.0368 98.7 0.1 2.18
#1 Air 8.08 20.1 0.0369 0.6 99.7 1.79
#2 Air 8.01 19.8 0.0354 0.3 99.7 0.85
#3 Air 7.98 19.8 0.0373 0.6 99.9 2.28

8.02 19.9 0.0367 - - 2.05

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 8.08 20.1 0.0409 -19.4 100.3
#2 8.01 19.8 0.0432 -24.5 101.8
#3 7.98 19.8 0.0456 -24.5 100.6

8.02 19.9 0.0432 - -

Test Conditions:
DI Water w/ Surfactant Closed Vent Mode
A = 0.62% UG = 12.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 12.03 19.6 0.0547 98.2 0.1 1.81
#2 Nitrogen 11.91 19.5 0.0583 99.2 0.1 1.90
#3 Nitrogen 11.94 19.3 0.0606 99.0 0.1 1.97
#1 Air 12.03 19.6 0.0568 0.0 99.7 1.66
#2 Air 11.91 19.5 0.0631 0.2 99.8 2.14
#3 Air 11.94 19.3 0.0634 -0.3 99.1 1.33
#1 Carbon Monoxide 12.03 19.6 0.0554 98.1 0.1 1.90
#2 Carbon Monoxide 11.91 19.5 0.0569 707.6 0.0 1.90
#3 Carbon Monoxide 11.94 19.3 0.0625 98.8 0.1 2.09
#1 Air 12.03 19.6 0.0595 0.6 100.0 2.23
#2 Air 11.91 19.5 0.0622 0.7 99.9 1.72
#3 Air 11.94 19.3 0.0635 0.2 98.7 1.54

11.96 19.5 0.0598 - - 1.85

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 12.03 19.6 0.0649 -31.1 99.8
#2 11.91 19.5 0.0607 -26.4 101.9
#3 11.94 19.3 0.0845 -37.1 96.2

11.96 19.5 0.0701 - -

Carbon Monoxide
Carbon Monoxide

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide
Carbon Monoxide
Carbon Monoxide

Average

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
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Test Conditions:
DI Water w/ Surfactant Closed Vent Mode
A = 0.62% UG = 16.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 16.06 19.3 0.1049 109.5 0.0 9.53
#2 Nitrogen 16.06 19.7 0.0657 98.9 0.1 2.00
#3 Nitrogen 16.12 19.7 0.0640 99.6 0.1 2.00
#1 Air 16.06 19.3 0.0631 99.2 0.2 1.72
#2 Air 16.06 19.7 0.0929 1.4 100.6 2.26
#3 Air 16.12 19.7 0.0695 1.3 100.3 1.77
#1 Carbon Monoxide 16.06 19.3 0.0661 1.2 100.2 1.74
#2 Carbon Monoxide 16.06 19.7 0.0683 1.0 100.0 2.17
#3 Carbon Monoxide 16.12 19.7 0.0784 99.5 0.1 2.04
#1 Air 16.06 19.3 0.0674 102.4 0.1 3.51
#2 Air 16.06 19.7 0.0635 99.1 0.1 1.72
#3 Air 16.12 19.7 0.0646 99.3 0.2 1.97

16.08 19.6 0.0724 - - 2.70

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 16.06 19.3 0.0684 -7.4 100.4
#2 16.06 19.7 0.0779 -6.7 99.6
#3 16.12 19.7 0.0000 0.0 0.0

16.08 19.6 0.0488 - -

Test Conditions:
DI Water w/ Surfactant Closed Vent Mode
A = 0.62% UG = 20.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 19.99 19.9 0.0749 98.7 0.1 1.85
#2 Nitrogen 19.96 19.9 0.0744 99.1 0.1 1.77
#3 Nitrogen 19.93 19.8 0.0786 99.9 0.1 4.43
#1 Air 19.99 19.9 0.0812 1.7 100.2 2.02
#2 Air 19.96 19.9 0.0799 0.9 100.3 2.07
#3 Air 19.93 19.8 0.0783 1.0 100.0 1.86
#1 Carbon Monoxide 19.99 19.9 0.0759 99.1 0.0 2.12
#2 Carbon Monoxide 19.96 19.9 0.0749 99.9 0.1 1.92
#3 Carbon Monoxide 19.93 19.8 0.0755 99.1 0.1 1.79
#1 Air 19.99 19.9 0.0779 1.0 100.3 2.15
#2 Air 19.96 19.9 0.0777 1.4 100.2 1.92
#3 Air 19.93 19.8 0.0769 0.4 100.2 1.66

19.96 19.9 0.0772 - - 2.13

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 19.99 19.9 0.0728 -3.5 99.6
#2 19.96 19.9 0.0685 -2.2 98.7
#3 19.93 19.8 0.0791 -4.6 96.1

19.96 19.9 0.0735 - -

Carbon Monoxide
Carbon Monoxide

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide
Carbon Monoxide
Carbon Monoxide

Average

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
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Test Conditions:
DI Water w/ Surfactant Bubble Column Mode
A = 0.62% UG = 0.5 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 0.52 20.5 0.0054 113.9 -0.1 0.00
#2 Nitrogen 0.52 20.5 0.0057 98.6 0.1 7.37
#3 Nitrogen 0.53 20.6 0.0062 98.5 0.0 6.71
#1 Air 0.52 20.5 0.0060 1.2 99.8 7.15
#2 Air 0.52 20.5 0.0058 1.0 99.8 6.94
#3 Air 0.53 20.6 0.0064 1.4 99.4 5.50
#1 Carbon Monoxide 0.52 20.5 0.0058 98.2 0.1 7.92
#2 Carbon Monoxide 0.52 20.5 0.0057 104.1 0.0 14.18
#3 Carbon Monoxide 0.53 20.6 0.0062 103.1 0.0 15.64
#1 Air 0.52 20.5 0.0059 1.1 100.0 5.32
#2 Air 0.52 20.5 0.0064 1.4 100.0 5.53
#3 Air 0.53 20.6 - - - -

0.52 20.5 0.0060 - - 7.48

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 0.52 20.5 0.0070 -18.9 104.1
#2 0.52 20.5 0.0068 -14.2 103.6
#3 0.53 20.6 0.0070 -12.7 101.8

0.52 20.5 0.0069 - -

Test Conditions:
DI Water w/ Surfactant Bubble Column Mode
A = 0.62% UG = 2.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 2.02 20.1 0.0142 99.3 0.0 3.91
#2 Nitrogen 2.02 19.9 0.0144 98.9 0.1 3.29
#3 Nitrogen 2.02 20.1 0.0145 99.2 0.0 3.50
#1 Air 2.02 20.1 0.0152 1.2 99.4 3.91
#2 Air 2.02 19.9 0.0155 1.7 100.0 4.64
#3 Air 2.02 20.1 0.0159 1.3 100.2 4.94
#1 Carbon Monoxide 2.02 20.1 0.0145 98.8 0.0 3.54
#2 Carbon Monoxide 2.02 19.9 0.0149 99.2 0.0 3.84
#3 Carbon Monoxide 2.02 20.1 0.0150 98.7 0.0 4.14
#1 Air 2.02 20.1 0.0148 0.5 99.7 2.63
#2 Air 2.02 19.9 0.0158 1.4 100.1 5.25
#3 Air 2.02 20.1 0.0156 2.0 101.0 4.52

2.02 20.0 0.0150 - - 4.01

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 2.02 20.1 0.0141 -2.9 105.1
#2 2.02 19.9 0.0151 0.2 101.7
#3 2.02 20.1 0.0136 -1.3 103.6

2.02 20.0 0.0143 - -

Oxygen Mass Transfer Data

Test Inlet Gas

Test 

Average

Carbon Monoxide Mass Transfer Data

Carbon Monoxide
Carbon Monoxide
Carbon Monoxide

Inlet Gas

Oxygen Mass Transfer Data

Average

Test Inlet Gas

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide
Carbon Monoxide
Carbon Monoxide

Average
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Test Conditions:
DI Water w/ Surfactant Bubble Column Mode
A = 0.62% UG = 4.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 4.02 20.2 0.0274 98.4 0.1 3.34
#2 Nitrogen 3.99 20.1 0.0284 98.6 0.1 3.86
#3 Nitrogen 4.03 19.8 0.0287 100.2 0.1 1.75
#1 Air 4.02 20.2 0.0301 1.2 101.5 3.90
#2 Air 3.99 20.1 0.0317 1.5 102.7 4.13
#3 Air 4.03 19.8 0.0317 1.3 101.6 4.21
#1 Carbon Monoxide 4.02 20.2 0.0281 98.6 0.0 2.89
#2 Carbon Monoxide 3.99 20.1 0.0297 98.7 0.0 3.45
#3 Carbon Monoxide 4.03 19.8 0.0300 98.7 0.1 3.27
#1 Air 4.02 20.2 0.0303 1.9 102.8 4.32
#2 Air 3.99 20.1 0.0311 1.8 102.6 4.40
#3 Air 4.03 19.8 0.0317 2.0 102.2 4.36

4.01 20.0 0.0299 - - 3.66

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 4.02 20.2 0.0317 -20.3 102.1
#2 3.99 20.1 0.0289 -5.1 101.2
#3 4.03 19.8 0.0322 -17.3 100.9

4.01 20.0 0.0309 - -

Test Conditions:
DI Water w/ Surfactant Bubble Column Mode
A = 0.62% UG = 6.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 5.97 20.0 0.0406 99.0 0.1 3.24
#2 Nitrogen 5.98 19.9 0.0326 98.7 0.1 4.03
#3 Nitrogen 5.98 19.6 0.0305 99.1 0.3 2.77
#1 Air 5.97 20.0 0.0442 1.9 102.1 4.16
#2 Air 5.98 19.9 0.0382 1.6 100.0 4.26
#3 Air 5.98 19.6 0.0307 0.9 99.7 2.55
#1 Carbon Monoxide 5.97 20.0 0.0415 99.2 0.1 3.15
#2 Carbon Monoxide 5.98 19.9 0.0331 98.7 0.1 3.17
#3 Carbon Monoxide 5.98 19.6 0.0309 98.9 0.2 2.32
#1 Air 5.97 20.0 0.0443 1.6 102.5 4.18
#2 Air 5.98 19.9 0.0361 1.0 100.0 3.44
#3 Air 5.98 19.6 0.0313 0.9 99.7 2.15

5.98 19.8 0.0362 - - 3.28

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 5.97 20.0 0.0389 -1.3 98.4
#2 5.98 19.9 0.0301 -0.7 106.3
#3 5.98 19.6 0.0297 -1.8 105.1

5.98 19.8 0.0329 - -

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide
Carbon Monoxide
Carbon Monoxide

Average

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide
Carbon Monoxide
Carbon Monoxide

Average
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Test Conditions:
DI Water w/ Surfactant Bubble Column Mode
A = 0.62% UG = 8.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 8.02 20.0 0.0395 98.7 0.2 2.38
#2 Nitrogen 8.02 19.8 0.0395 98.3 0.1 2.61
#3 Nitrogen 8.02 19.9 0.0393 98.6 0.1 2.96
#1 Air 8.02 20.0 0.0397 1.4 99.9 2.33
#2 Air 8.02 19.8 0.0395 0.5 99.9 2.41
#3 Air 8.02 19.9 0.0393 1.1 99.8 2.37
#1 Carbon Monoxide 8.02 20.0 0.0399 99.1 0.1 2.49
#2 Carbon Monoxide 8.02 19.8 0.0399 98.9 0.1 2.90
#3 Carbon Monoxide 8.02 19.9 0.0396 98.9 0.1 2.64
#1 Air 8.02 20.0 0.0392 1.1 99.7 2.24
#2 Air 8.02 19.8 0.0390 1.1 99.7 2.18
#3 Air 8.02 19.9 0.0391 1.2 99.9 2.55

8.02 19.9 0.0395 - - 2.51

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 8.02 20.0 0.0436 -24.6 100.9
#2 8.02 19.8 0.0477 -24.2 101.1
#3 8.02 19.9 0.0459 -23.8 99.2

8.02 19.9 0.0457 - -

Test Conditions:
DI Water w/ Surfactant Bubble Column Mode
A = 0.62% UG = 12.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 12.00 20.1 0.0554 98.6 0.1 2.97
#2 Nitrogen 11.99 19.8 0.0559 97.9 0.1 2.66
#3 Nitrogen 12.01 19.9 0.0560 98.3 0.1 2.78
#1 Air 12.00 20.1 0.0570 1.2 100.1 2.80
#2 Air 11.99 19.8 0.0572 1.3 100.1 2.85
#3 Air 12.01 19.9 0.0580 2.0 100.0 3.30
#1 Carbon Monoxide 12.00 20.1 0.0567 98.2 0.0 3.00
#2 Carbon Monoxide 11.99 19.8 0.0567 98.3 0.0 3.17
#3 Carbon Monoxide 12.01 19.9 0.0571 98.6 0.0 3.17
#1 Air 12.00 20.1 0.0549 1.5 100.2 2.44
#2 Air 11.99 19.8 0.0558 1.0 100.2 2.89
#3 Air 12.01 19.9 0.0568 1.6 100.1 2.88

12.00 19.9 0.0565 - - 2.91

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 12.00 20.1 0.0473 0.4 105.2
#2 11.99 19.8 0.1063 -326.7 100.1
#3 12.01 19.9 0.0734 -39.0 99.1

12.00 19.9 0.0756 - -

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide
Carbon Monoxide
Carbon Monoxide

Average

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide
Carbon Monoxide
Carbon Monoxide

Average
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Test Conditions:
DI Water w/ Surfactant Bubble Column Mode
A = 0.62% UG = 16.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 15.87 19.3 0.0692 98.9 0.1 3.07
#2 Nitrogen 15.89 20.0 0.0685 98.5 0.1 3.10
#3 Nitrogen 15.90 19.7 0.0688 98.6 0.1 3.34
#1 Air 15.87 19.3 0.0721 1.9 99.9 2.74
#2 Air 15.89 20.0 0.0736 1.5 102.1 2.68
#3 Air 15.90 19.7 0.0747 1.7 102.4 3.02
#1 Carbon Monoxide 15.87 19.3 0.0715 99.1 0.0 3.17
#2 Carbon Monoxide 15.89 20.0 0.0719 98.6 -0.2 3.36
#3 Carbon Monoxide 15.90 19.7 0.0733 98.3 -0.2 3.50
#1 Air 15.87 19.3 0.0699 1.2 100.3 2.47
#2 Air 15.89 20.0 0.0668 1.5 101.4 2.70
#3 Air 15.90 19.7 0.0677 1.8 102.2 2.60

15.89 19.7 0.0707 - - 2.98

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 15.87 19.3 0.0763 -15.2 101.1
#2 15.89 20.0 0.0727 -17.4 101.7
#3 15.90 19.7 0.0806 -26.9 99.4

15.89 19.7 0.0765 - -

Test Conditions:
DI Water w/ Surfactant Bubble Column Mode
A = 0.62% UG = 20.0 cm/s

Gas Velocity Temperature kLa Co C¶ te 
(cm/s) (ºC) (1/s) (% of Sat) (% of Sat) (s)

#1 Nitrogen 19.99 19.8 0.0826 99.1 0.4 1.92
#2 Nitrogen 19.97 19.1 0.0847 98.1 0.1 2.35
#3 Nitrogen 20.00 19.8 0.0890 98.9 0.1 2.43
#1 Air 19.99 19.8 0.0856 1.4 99.9 1.97
#2 Air 19.97 19.1 0.0898 1.5 100.1 2.53
#3 Air 20.00 19.8 0.0892 1.3 100.2 2.12
#1 Carbon Monoxide 19.99 19.8 0.0835 99.0 0.1 2.27
#2 Carbon Monoxide 19.97 19.1 0.0850 98.6 0.1 2.38
#3 Carbon Monoxide 20.00 19.8 0.0892 97.9 0.1 2.37
#1 Air 19.99 19.8 0.0861 1.7 99.9 2.30
#2 Air 19.97 19.1 0.0870 1.3 100.2 2.51
#3 Air 20.00 19.8 0.0904 1.4 100.1 2.21

19.99 19.6 0.0868 - - 2.28

Gas Velocity Temperature kLa Co C¶ 

(cm/s) (ºC) (1/s) (% of Sat) (% of Sat)
#1 19.99 19.8 0.0818 -19.2 100.8
#2 19.97 19.1 0.0972 -22.2 96.8
#3 20.00 19.8 0.0889 -6.3 101.3

19.99 19.6 0.0893 - -

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide
Carbon Monoxide
Carbon Monoxide

Average

Oxygen Mass Transfer Data

Test Inlet Gas

Average

Carbon Monoxide
Carbon Monoxide

Average

Carbon Monoxide Mass Transfer Data

Test Inlet Gas
Carbon Monoxide
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